K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

16 tháng 5 2021

S A B C D H O K I L T

a) SA vuông góc với (ABCD) => SA vuông góc AD; hình thang ABCD vuông tại A => AD vuông góc AB

=> AD vuông góc (SAB), mà AD nằm trong (SAD) nên (SAB) vuông góc (SAD).

b) AD vuông góc (SAB), BC || AD => BC vuông góc (SAB) => B là hc vuông góc của C trên (SAB)

=> (SC,SAB) = ^CAB

\(SB=\sqrt{AS^2+AB^2}=\sqrt{2a^2+a^2}\)\(=a\sqrt{3}\)

\(\tan\widehat{CAB}=\frac{BC}{SB}=\frac{a}{a\sqrt{3}}=\frac{\sqrt{3}}{3}\)=> (SC,SAB) = ^CAB = 300.

c) T là trung điểm của AD, K thuộc ST sao cho AK vuông góc ST, BT cắt AC tại O, HK cắt AO tại I, AI cắt SC tại L.

BC vuông góc (SAB) => BC vuông góc AH, vì AH vuông góc SB nên AH vuông góc SC. Tương tự AK vuông góc SC

=> SC vuông góc (HAK) => SC vuông góc AI,AL. Lập luận tương tự thì AL,AI vuông góc (SCD).

Dễ thấy \(\Delta\)SAB = \(\Delta\)SAT, chúng có đường cao tương ứng AH và AK => \(\frac{HS}{HB}=\frac{KS}{KT}\)=> HK || BT || CD

=> d(H,SCD) = d(I,SCD) = IL (vì A,I,L vuông góc (SCD)) = \(\frac{IL}{AL}.AL=\frac{CO}{CA}.\frac{SI}{SO}.AL=\frac{1}{2}.\frac{SH}{SB}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}\)

\(=\frac{1}{2}.\frac{SA^2}{SA^2+SB^2}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}=\frac{1}{2}.\frac{2a^2}{2a^2+a^2}.\frac{a\sqrt{2}.a\sqrt{2}}{\sqrt{2a^2+2a^2}}=\frac{a}{3}\)

17 tháng 5 2021

undefined

undefined

 

 


 

 

22 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó (SBC) ⊥ (SIK)

b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).

Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK

ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...