K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Câu hỏi của Phạm Thùy Dương - Toán lớp 11 - Học toán với OnlineMath

Em tham khảo bài làm tại link này nhé!

12 tháng 4 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau các bài Toán lớp 10, 11, 12 các em đăng trong trang Cộng đồng học tập online | Học trực tuyến nhé! olm hầu như để giải đáp thắc mắc của HỌc sinh tiểu học và trung học em nhé :). Chúc em học tập tốt :)<3

22 tháng 2 2021

+ SA⊥(ABCD)⇒SA⊥BDSA⊥(ABCD)⇒SA⊥BD (1)

+ ABCD là hình vuông ⇒AC⊥BD⇒AC⊥BD (2)

+ Từ (1) và (2) suy ra BD⊥(SAC)⇒BD⊥SCBD⊥(SAC)⇒BD⊥SC

22 tháng 2 2021
Mình không biết.
28 tháng 4 2016

s A B C D a

1.SA \(\perp\)AB , SA\(\perp\)AD =>SAB vuông tại A, SAD vuông tại A

\(\begin{cases}AB\perp BC\left(hvABCD\right)\\SA\perp BC\left(SA\perp mpABCD\right)\end{cases}\) =>(SAB)\(\perp\)BC  =>SB\(\perp\)BC =>SBC vuông tại B

\(\begin{cases}AD\perp CD\\SA\perp CD\end{cases}\) =>(SAD)\(\perp\)CD =>SD\(\perp\)CD =>SCD vuông tại D

21 tháng 4 2017

bạn Như cho mình xin đáp án mấy câu còn lại nhé ạ

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

NV
4 tháng 5 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Từ A kẻ \(AH\perp SO\Rightarrow AH\perp\left(SBD\right)\)

\(\Rightarrow AH=d\left(A;\left(SBD\right)\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)

Hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AO^2}\Rightarrow AH=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{a\sqrt{21}}{7}\)

23 tháng 4 2017

22 tháng 3 2018