Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q là trung điểm SB
Khi đó PQ||AB||MN
Mà \(P\in mp\left(MNP\right)\)
=> \(Q\in mp\left(MNP\right)\)
Khi đó tứ giác MNPQ là thiết diện cần tìm
a) Tìm thiết diện :
Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN
Trong mp(SAD), gọi Q = MF ∩ SD
Trong mp(SAB), gọi R = ME ∩ SB
Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM
Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.
b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .
Trong (SAC), SO ∩ MH = I
Vậy I = SO ∩ (MNP).
Do MN//BD nên giao tuyến của (MNK) với (SBD) song song với MN. Qua I dựng đường thẳng song song với MN cắt SD,SB lần lượt tại E và F khi đó thiết diện là ngũ giác KEMNF
Trong mp (ABCD), nối MN kéo dài lần lượt cắt AB và AD kéo dài tại E và F
Trong mp (SAB), nối PE cắt SA tại G \(\Rightarrow PG=\left(MNP\right)\cap\left(SAB\right)\)
Trong mp (SAD), nối PF cắt SD tại H \(\Rightarrow PH=\left(MNP\right)\cap\left(SAD\right)\)
\(NH=\left(MNP\right)\cap\left(SCD\right)\)
\(GM=\left(MNP\right)\cap\left(SBC\right)\)
IJ là đường trung bình của hình thang \(\Rightarrow\left\{{}\begin{matrix}IJ||AB\\IJ=\dfrac{AB+CD}{2}\end{matrix}\right.\)
Qua G kẻ đường thẳng song song AB lần lượt cắt SB, SA tại E và F
\(\Rightarrow\) Tứ giác IJEF là thiết diện của (GIJ) và chóp
\(EF||AB||IJ\Rightarrow IJEF\) là hình thang
Gọi M là trung điểm AB
Theo tính chất trọng tâm và định lý Talet:
\(\dfrac{EF}{AB}=\dfrac{SG}{SM}=\dfrac{2}{3}\)
Để IJEF là hình bình hành \(\Leftrightarrow IJ=EF\)
\(\Leftrightarrow\dfrac{2}{3}AB=\dfrac{AB+CD}{2}\Leftrightarrow\dfrac{1}{3}AB=CD\)
\(\Rightarrow AB=3CD\)
Trong mặt phẳng (ABCD) ta có AC cắt BD tại O, IJ cắt BD tại E.
Trong mặt phẳng (SBD), ME cắt SO tại G. ta có G thuộc (MIJ)
(MIJ) chứa IJ // AC nên giao tuyến của (MIJ) với (SAC) là đường thẳng qua G và song song với AC, đường thẳng này cắt SA tại N, cắt SC tại P.
Vậy thiết diện là ngũ giác MNIJ.
Đáp án D