K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

HCN ko cho bk cạnh hả b?

 

8 tháng 4 2016

D A B C N M I G H

\(d\left(M,BN\right)=\frac{\left|13\left(-1\right)-10.2+13\right|}{\sqrt{13^2+10^2}}=\frac{20}{\sqrt{269}}\)

\(H\in\Delta\Leftrightarrow H\left(3a;2a\right)\)

Gọi I là tâm ABCD, G là giao điểm của AC và BN. Ta thấy G là trọng tâm của tam giác BCD

Suy ra \(CG=\frac{2}{3}.CI=\frac{1}{3}AC\) mà \(AM=\frac{1}{4}AC\Rightarrow MG=\frac{5}{12}AC\Rightarrow CG=\frac{4}{5}MG\)

\(\Rightarrow d\left(C,BN\right)=\frac{4}{5}d\left(M,BN\right)=\frac{16}{\sqrt{269}}\Rightarrow d\left(H,BN\right)=2d\left(C,BN\right)=\frac{32}{\sqrt{269}}\)

\(\Leftrightarrow\frac{\left|13.3a-10.2a+13\right|}{\sqrt{269}}=\frac{32}{\sqrt{269}}\Leftrightarrow a=1\) hoặc \(a=\frac{-45}{19}\)

Vì H và M nằm khác phía đối với đường thẳng BN nên \(H\left(3;2\right)\)

8 tháng 4 2016

Tiếp.........

Ta thấy \(CM=\frac{3AC}{4}=\frac{2AB}{4}=\frac{2CD}{4}=\frac{CD}{2}=CD=CH\Rightarrow\Delta MHN\) vuông tại M

HM có phương trình \(y-2=0\Rightarrow MN:x+1=0\Rightarrow N\left(-1;0\right)\Rightarrow C\left(1;1\right),D\left(-3;-1\right)\)

Do \(\overrightarrow{CM}=3\overrightarrow{MA}\Rightarrow A\left(\frac{-5}{3};\frac{7}{3}\right)\Rightarrow I\left(\frac{-1}{3};\frac{5}{3}\right)\Rightarrow B\left(\frac{7}{3};\frac{13}{3}\right)\)

Vậy \(A\left(\frac{-5}{3};\frac{7}{3}\right);B\left(\frac{7}{3};\frac{13}{3}\right);C\left(1;1\right);D\left(-3.-1\right)\)

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

2 tháng 4 2016

S B M H A E N C D

Gọi H là hình chiếu vuông góc của S lên AB, suy ra \(SH\perp\left(ABCD\right)\)

Do đó, SH là đường cao của hình chóp S.BMDN

Ta có : \(SA^2+SB^2=a^2+3a^2=AB^2\)

Nên tam giác SAB là tam giác vuông tại S.

Suy ra : \(SM=\frac{AB}{2}=a\) Do đó tam giác SAM là tam giác đều, suy ra \(SH=\frac{a\sqrt{3}}{3}\)

Diện tích của tứ giác BMDN là \(S_{BMDN}=\frac{1}{2}S_{ABCD}=2a^2\)

Thể tích của khối chóp S.BMDN là \(V=\frac{1}{3}SH.S_{BMDN}=\frac{a^3\sqrt{3}}{3}\)

Kẻ ME song song với DN (E thuộc AD)

Suy ra : \(AE=\frac{a}{2}\) Đặt \(\alpha\) là góc giữa 2 đường thẳng SM và DN

Ta có \(\left(\widehat{SM,ME}\right)=\alpha\), theo định lý 3 đường vuông góc ta có \(SA\perp AE\)

Suy ra :

\(SE=\sqrt{SA^2+AE^2}=\frac{a\sqrt{5}}{2};ME=\sqrt{AM^2+AE^2}=\frac{a\sqrt{5}}{2}\)

Tam giác SME là tam giác cân tại E nên \(\begin{cases}\widehat{SME}=\alpha\\\cos\alpha=\frac{\frac{a}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{5}}{5}\end{cases}\)

 

 

14 tháng 4 2019

Cho mình hỏi, tam giác cân thì tại sao lại suy ra cos góc kia như thế ??

20 tháng 5 2017

Khối đa diện

\(V_{ABSI}=V_{S.ABI}=\dfrac{1}{2}V_{S.ABCD}=\dfrac{a^3}{9}\)

14 tháng 5 2018

Đáp án D

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó 2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\) 3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60....
Đọc tiếp

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó

2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\)

3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60. Góc giữa A'B và (ABC) bằng 30. Tính thể tích khối lăng trụ đó

4,hình chóp có đường cao bằng 12cm, đáy là tam giác ddeuf cạnh bằng 4cm. Tính thể tích

5,Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mp (ABCD) là điểm H trên cạnh AD sao cho AH= 2HD, (SBC) hợp với đáy một góc 60. Tính thể tích V của khối chóp S.ABCD A. \(\dfrac{a^3\sqrt{3}}{9}\) B, \(\dfrac{2a^3\sqrt{3}}{3}\) C, \(a^3\sqrt{3}\) D, \(\dfrac{a^3\sqrt{3}}{3}\)

0