K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

Giúp mình câu b, c với ạ 

c: \(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

d: Gọi O là giao của BC và AD

\(O\in BC\subset\left(SBC\right);O\in AD\subset\left(SAD\right)\)

=>\(O\in\left(SBC\right)\cap\left(SAD\right)\)

=>\(\left(SBC\right)\cap\left(SAD\right)=SO\)

10 tháng 12 2021

10 tháng 12 2021

NV
11 tháng 9 2021

Nối BC và AD kéo dài cắt nhau tại F

\(\Rightarrow SF=\left(SBC\right)\cap\left(SAD\right)\)

Trong mp (SCD), nối CM kéo dài cắt SD tại G

\(\Rightarrow AG=\left(AMC\right)\cap\left(SAD\right)\)

Trong mp (SCD), nối SM kéo dài cắt CD tại E

\(\Rightarrow AE=\left(SAM\right)\cap\left(ABCD\right)\)

Trong mp (ABCD), nối BE cắt AC tại H

\(\Rightarrow SH=\left(SBM\right)\cap\left(SAC\right)\)

NV
11 tháng 9 2021

undefined

a: \(M\in BC\subset\left(SBC\right);M\in\left(SOM\right)\)

Do đó: \(M\in\left(SBC\right)\cap\left(SOM\right)\)

mà \(S\in\left(SBC\right)\cap\left(SOM\right)\)

nên (SBC) giao (SOM)=SM

b: \(N\in CD\subset\left(SCD\right);N\in\left(SAN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(SAN\right)\)

mà \(S\in\left(SCD\right)\cap\left(SAN\right)\)

nên \(\left(SCD\right)\cap\left(SAN\right)=SN\)

c: \(M\in BC\subset\left(SBC\right);M\in\left(SAM\right)\)

Do đó: \(M\in\left(SBC\right)\cap\left(SAM\right)\)

mà S thuộc (SBC) giao (SAM)

nên (SBC) giao (SAM)=SM

d: Trong mp(ABCD), gọi E là giao của AM với BD

\(E\in AM\subset\left(SAM\right);E\in BD\subset\left(SBD\right)\)

Do đó: E thuộc (SAM) giao (SBD)

mà S thuộc (SAM) giao (SBD)

nên (SAM) giao (SBD)=SE

e: Gọi F là giao của AN với BD trong mp(ABCD)

\(F\in AN\subset\left(SAN\right);F\in BD\subset\left(SBD\right)\)

=>F thuộc (SAN) giao (SBD)

mà S thuộc (SAN) giao (SBD)

nên (SAN) giao (SBD)=SF
f: \(CD\subset\left(SCD\right);CD\subset\left(ABCD\right)\)

Do đó: (SCD) giao (ABCD)=CD

14 tháng 9 2023

Bn có thể vẽ hình hộ mik đc k ạ

28 tháng 10 2023

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

c: \(N\in SB\subset\left(SAB\right);N\in\left(NCD\right)\)

=>\(N\in\left(SAB\right)\cap\left(NCD\right)\)

Xét (SAB) và (NCD) có

\(N\in\left(SAB\right)\cap\left(NCD\right)\)

AB//CD

Do đó: (SAB) giao (NCD)=ab, ab đi qua N và ab//CD//AB

25 tháng 11 2023

a: Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

2: Trong mp(ABCD), gọi E là giao điểm của AD và BC

\(E\in AD\subset\left(SAD\right);E\in BC\subset\left(SBC\right)\)

Do đó: \(E\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SE\)

3: Xét (SBA) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

a) Gọi giao điểm của AD và BC là K.

Ta có: SK cùng thuộc mp(SAD) và (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.

c) Gọi là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).

3 tháng 10 2021

undefined

a, Gọi O là giao điểm của AC và BD

⇒ SO = (SAC) \(\cap\) (SBD)

b, (SAB) và (SCD) cùng đi qua điểm S và lần lượt chứa hai đường thẳng AB & CD, mà ta lại có AB // CD

⇒ (SAB) \(\cap\) (SCD) = Sx. trong đó Sx là đường thẳng đi qua S và song song với AB và CD

c, Trong (SAC) gọi K là giao điểm của SO và AM

⇒ AM \(\cap\) (SBD) = K

d, Trong (ABCD) gọi I = DN \(\cap\) BC

⇒ DN \(\cap\) (SBC) = I

10 tháng 11 2023

Gọi giao điểm của AC và BD là K

\(K\in AC\subset\left(SAC\right)\)

\(K\in BD\subset\left(SBD\right)\)

Do đó: \(K\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SK\)

Gọi giao điểm của AB và CD là H

\(H\in AB\subset\left(SAB\right)\)

\(H\in CD\subset\left(SCD\right)\)

Do đó: \(H\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SH\)

Gọi M là giao điểm của AD và BC

\(M\in AD\subset\left(SAD\right)\)

\(M\in BC\subset\left(SBC\right)\)

Do đó: \(M\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SM\)

\(P\in SD\subset\left(SCD\right)\)

\(P\in\left(PAB\right)\)

Do đó: \(P\in\left(SCD\right)\cap\left(PAB\right)\)(1)

\(H\in AB\subset\left(PAB\right);H\in CD\subset\left(SCD\right)\)

Do đó: \(H\in\left(PAB\right)\cap\left(SCD\right)\)(2)

Từ (1) và (2) suy ra \(\left(SCD\right)\cap\left(APB\right)=HP\)

10 tháng 11 2023

Cảm ơn ạ

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.