Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)
a) Chứng minh ΔAED=ΔCFB
b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF
a, Vì O là giao điểm 2 đg chéo của hbh ABCD nên \(OB=OD\)
Mà M,N là trung điểm OB,OD nên \(OM=ON\)
Mà O là giao điểm 2 đg chéo của hbh ABCD nên \(OA=OC\)
Do đó AMCN là hbh (do O là trung điểm AC và MN)
b, Vì AMCN là hbh nên AN//CM hay AE//CF
Mà ABCD là hbh nên AD//BC hay AF//CE
Do đó AECF là hbh nên \(AE=CF\)
Do AECF là hbh mà O là trung điểm AC nên cũng là trung điểm EF
Vậy O;E;F thẳng hàng
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra AE=CF: ED=FB
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
FB=ED
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác KBID có
KB//ID
KB=ID
Do đó: KBID là hình bình hành
Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường