Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A H B N C M D I
Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB
Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)
Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)
Mà BM=DN nên h=k
Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm )
https://hoccungvuvi.blogspot.com/2019/07/hinh-hoc-nang-cao-lop-8-danh-cho-hoc.html
5:
5.1: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
AB=AC
Do đó: ABDC là hình thoi
5.2: Xét tứ giác DMEC có
K là trung điểm chung của DE và MC
=>DMEC là hình bình hành
=>DM//ECvà DM=EC
mà AM=MD và A,M,D thẳng hàng
nên MA//EC và MA=EC
ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
Xét tứ giác AMCE có
AM//CE
AM=CE
góc AMC=90 độ
Do đó: AMCE là hình chữ nhật
5.3:
AMCE là hình chữ nhật
=>AE//CM và AE=CM
mà B,M,C thẳng và MB=MC
nên MB//AE và MB=AE
=>AEMB là hình bình hành
=>AM cắt EB tại trung điểm của mỗi đường
=>I là trung điểm của BE
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
b: AM+MB=AB
CN+ND=CD
mà MB=ND và AB=CD
nên AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
c: AMCN là hình bình hành
=>AN//CM
=>NK//MH
BMDN là hình bình hành
=>BN//DM
=>NH//KM
Xét tứ giác MKNH có
MK//NH
MH//NK
Do đó: MKNH là hình bình hành
A B C D M N I H
Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.
Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)
Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).