K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Gọi E là trung điểm của MB, P là giao điểm của AI với CD. Đặt AB = a

   Theo định lý Ta-lét. Ta có: \(\frac{1}{2}=\frac{GE}{GN}=\frac{AE}{NP}\)

A M E G B I P C N D

\(=\frac{\frac{2}{3}AB}{\frac{1}{2}CD+CP}=\frac{4a}{3a+6CP}\Rightarrow CP=\frac{5a}{6}\)

Suy ra \(\frac{IB}{IC}=\frac{AB}{CP}=\frac{6}{5}\)

Vì \(\frac{GA}{GP}=\frac{GE}{GM}=\frac{1}{2}\)nên \(\frac{GA}{AP}=\frac{1}{3}\) (1)

Mà \(\frac{IA}{IP}=\frac{IB}{IC}=\frac{6}{5}\)nên kết hợp với (1) ta được: \(\frac{GI}{AP}=\frac{AI}{AP}-\frac{AG}{AP}=\frac{6}{11}-\frac{1}{3}=\frac{7}{33}\) (2)

  Chia theo vế của (1) cho (2) ta được:

 \(\frac{GA}{GI}=\frac{11}{7}\)

Tóm lại \(\frac{GA}{GI}=\frac{11}{7};\frac{IB}{IC}=\frac{6}{5}\)

17 tháng 9 2019

Èo, lúc trước làm, giờ đọc lại chả hiểu gì:( mà lúc đó mới lớp 7 ko hiểu sao mình lại làm được ta:)) giờ làm ko đc:(

23 tháng 2 2015

Bài 2 : a) Ta có : OM // AB =>  \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)

ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)

AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)

Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON

b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)

Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)

Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c) Để mình tính đã nha

23 tháng 2 2015

Câu c bài 2 mình tính ra SABCD = 2008 + 2009 = 4017(đvdt) nhưng mà dài quá để giải sau nha