Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông ADH và BCK có:
AD = BC (tính chất hình bình hành)
B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)
Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)
⇒⇒ AH = CK (1)
Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)
⇒⇒ AK = CH (2)
Từ (1) và (2) suy ra: AHCK là hình bình hành
b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)
AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC
Vậy H, O, K thẳng hàng.
A B D C O H K
P.s:Mìh vẽ hình hơi xấu ;))
#) Tự vẽ hình
a) \(\Delta AID=\Delta BKC\left(ch-gn\right)\)
\(\Rightarrow AI=CK\)(2 cạnh tương ứng)
\(\Delta AKB=\Delta CKD\left(ch-gn\right)\)
\(\Rightarrow AI=CK\)(2 cạnh tương ứng)
\(\Rightarrow\)Tứ giác AICK là hình bình hành
a )
Tam giác AID = Tam giác BKC ( cạnh huyền - góc nhọn )
=> AI = CK ( 2 cạnh t.ứ )
Tam giác AKB = Tam giác CKD ( cạnh huyền - góc nhọn )
=> AI = CK ( 2 cạnh tương ứng )
=> Tứ giác AICK là hình bình hành
~ Hok tốt ~
#Deku
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra:AN//CM
a: Xét tứ giác AKCI có
AK//CI
AI//CK
Do đó: AKCI là hình bình hành
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED