Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/a. Có: E là trung điểm của AB(gt) => AE=1/2.AB
F là trung điểm của CD(gt) => CF=1/2.CD
Mà AB=CD (vì ABCD là hình bình hành và AB, CD là hai cạch đối nhau)
=> AE=CF
Lại có AB//CD (vì ABCD là hình bình hành và AB, CD là hai cạch đối nhau)
=> AE//CF (vì E thuộc AB, F thuộc CD)
Tứ giác AECF có: AE=CF (cmt) và AE//CF (cmt)
=> AECF là hình bình hành
b. Tam giác DCN có: F là trung điểm của CD(gt) và FM//CN (vì M thuộc AF, N thuộc CE và AF//CE)
=> M là trung điểm của DN (định lí 1 của bài đường trung bình của tam giác)
=> DM=MN (a)
Tam giác ABM có: E là trung điểm của AB(gt) và AM//EN (vì M thuộc AF, N thuộc CE và AF//CE)
=> N là trung điểm của MB
=> MN=NB (b)
Từ (a) và (b) => DM=MN=NB
(tự vẽ hình nhé)
a) OD = OB (gt) mà ED = EO = OD/2 ; FO = FB = OB/2
=> ED = EO = FO = FB
Ta có: OA = OC (gt) và OE = OF (cmt) => tứ giác AECF là hbh => AE // CF
b) Kẻ OS // AK (S thuộc DC)
Tg DOS: EO = ED (cmt) ; OS // EK (do OS //AK) => KD = KS. (1)
Hình thang EKCF: OE = OF (cmt) ; OS // EK (cmt) => KS = SC (2)
Từ (1) và (2) => KD = KS = SC (*)
Mặt khác: KS + SC = KC => 2 * KS = KC (**)
Từ (*) và (**) => đpcm
Bài 1:
Xét ΔADE và ΔCBF có:
AD=BC(gt)
\(\widehat{ADE}=\widehat{CBF}\) (soletrong do AD//BC)
DE=BF(gt)
=>ΔADE=ΔCBF(c.g.c)
=>AE=CF (1)
Xét ΔABF và ΔCDE có:
BF=DE(gt)
\(\widehat{ABF}=\widehat{CDE}\) (soletrong do AB..CD)
AB=CD(gt)
=>ΔABF=ΔCDE(c.g.c)
=>AF=CE (2)
Từ (1)(2) suy ra: AFCE là hbh
=>AF//CE
XIN LỖI NẾU LM PHIỀN CÁC BN MK ĐANG CẦN GẤP GIẢI GIÙM NHÉ
a) Ta có:OB=OD (tính chất hình bình hành)
OE=\(\frac{1}{2}\)OD (gt)
CF=\(\frac{1}{2}\)OB (gt)
=>OE=OF
Xét tứ giác AECF ta có:
OE=OF (cmt)
OA=OC (vì ABCD là hình bình hành)
=>Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
=>AE//CF
b) Kẻ OM//AK
Trong ▲CAK ta có:
OA=OC (cmt)
OM//AK (theo ta vẽ)
=>CM//MK (tính chất đường trung bình ▲) (1)
Trong ▲DMO ta có :
DE=EO (gt)
EK//OM
=>DK//KM (tính chất đường trung bình ▲) (2)
Từ (1) và (2)=> DK=KM=MC
=>DK=\(\frac{1}{2}\)KC
vào đây tham khảo nè bạn : https://h.vn/hoi-dap/question/90294.html
Chúc bạn hoc tốt
O là giao điểm 2 đường chéo AC ; BD ( gt )
Suy ra AO = OC và OD = OB ( ABCD - httg )
Ta có :
E là trung điểm OD ( gt )
Suy ra OE = \(\frac{1}{2}\). OD
F là trung điểm Ob ( gt )
Suy ra OF = \(\frac{1}{2}\). OB
Mà OD = OB
Suy ra OE = OF
Tứ giác AFCE có :
OA = OC ( cmt )
OE = OF ( cmt )
Nên O là giao điểm của 2 đường chéo AC ; EF
Suy ra AFCE là hình bình hành
Suy ra AE // CF
Từ O kẻ đường thẳng CD tại H sao cho OH // EK // CF
Xét tam giác DOH có ;
E trung điểm OH
EK // OH
K là trung điểm DH
Suy ra DK = KH ( 1 )
Xét hình thang AKCF có :
O là trung điểm EF ( câu a )
OH // EK // CF ( theo cách vẽ đường thẳng OH )
Suy ra H là trung điểm KC
Từ ( 1 ) ; ( 2 ) suy ra DK = KH = HC
Mà : KC = KH + HC
Suy ra KC = DK + DK ( vì DK = KH = HC )
Suy ra KC = 2DK
Suy ra DK = \(\frac{1}{2}\)KC ( đpcm )
:v mỏi tay
a/ Xét tgAOE và tg COF có
^AOE = ^ COF (góc đối đỉnh) (1)
OA=OC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) (2)
OD=OB mà OE=OD/2 và OF=OB/2 => OE=OF (3)
Từ (1) (2) (3) => tg AOE = tg COF => ^EAO = ^FCO => AE//CF (hai đường thẳng bị cắt bởi 1 cát tuyến có hai góc so le trong bằng nhau thì // với nhau)
b/
Xét tg DEK và tg DFC có
^FDC chung
^DEK = ^DFC (góc đồng vị)
=> tg DEK đồng dạng với tg DFC \(\Rightarrow\frac{DE}{DF}=\frac{DK}{DC}\)
Mà DE=OE=OF \(\Rightarrow\frac{DE}{DF}=\frac{DK}{DC}=\frac{1}{3}\Rightarrow\frac{DK}{KC}=\frac{1}{2}\Rightarrow DK=\frac{KC}{2}\)