Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Tứ giác DEBF ta có:
EB // DF ( vì AB // CD )
EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa lại câu từ cho hay]
\(\Rightarrow\)tứ giác DEBF là hbh
a, Ta có:ABCD la hình bình hành=>AB=CD;AB//CD
mà E là trung diểm của AB;Flà trung điểm của CD
=>AE=EB=CF=DF(1)
VÌ AB//CD=>EB//DF(2)
Từ(1) và (2)=> EBFD là hình bình hành( theo dấu hiệu nhận biết hình bình hành)(đpcm)
b, Xét hbh ABCD có
AC cắt BD tại trung diểm củaAC và BD(1)
Xét hbh EBFD có EF cắt BD tại trung điểm của EF và BD(2)
từ (1) và (2)=>ba dường thang AC,BD,EF đồng quy
c,GỌI GIAO DIỂM CỦA AC,BD,EF LÀ O
Xét tam giác EOM và tam giác NOF có
góc EOM=góc NOF( đói đỉnh)
OE=OF(vi O là trung điểm cua EF)
goc MEF=góc NFE(vì CE//BF)
=>TAM GIAC EOM=TAMGIAC NOF
=.ME=NF(1)
TA CÓ ME//FN(2)
TU (1) VA(2)=>ENFM LA HBH
Xét ∆ OAD có: OE=AE; OE=FD => EF là đtb của ∆ OAD => EF=1/2AD=1/2BC (1) và EF//AD
Ta có ABCD là hình thang cân => OCDˆ=ODCˆOCD^=ODC^=60 độ ( tự lập luận)
=> ∆ ODC đều có CF là đường trung tuyến đồng thời là đường cao => CF⊥⊥BD
∆BFC vuông tại F có FG là đường trung tuyến => FG=BG=CG=BC/2( theo t/c đường trung tuyến trong ∆ vuông) (2)
Chứng minh tương tự: EG=BC/2 (3)
Từ (1) ; (2) và (3) => FG=EF=EG => ∆ EFG đều
Nhấn đúng cho mình nha ^3^
Đây là câu trả lời đầy đủ của mình
Hãy ấn đúng cho mình nha các bạn ^3^
a, Ta có: ABCD la hình bình hành
=> AB=CD; AB//CD
Mà E là trung điểm của AB; F là trung điểm của CD.
=>AE= EB= CF= DF (1)
VÌ AB// CD=>EB// DF (2)
Từ(1) và (2) => EBFD là hình bình hành (theo dấu hiệu nhận biết hình bình hành)(đpcm)
b, Xét hbh ABCD ta có:
AC cắt BD tại trung điểm của AC và BD (1)
Xét hình bình hành EBFD có EF cắt BD tại trung điểm của EF và BD (2)
Từ (1) và (2) => Ba đường thẳng AC, BD, EF đồng quy