Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F I J K
a)
ta có: ABCD là hình vuông
=> AB=BC=CD=DA=>1/2AB=1/2CD=AI=JC
AI//JC
=>tứ giác AICJ là hình bình hành
gọi trung điểm của AC là K
ta có:ABCD là hình vuông=> AC và BD cắt nhau tại trung điểm của mỗi đường
=>BD cắt AC tại K(1)
ta có AICJ là hình bình hành => AC và DJ cắt nhau tại trung điểm của mỗi đường
=>DJ cắt AC tại K(2)
từ (1)(2)=> 3 đoạn thẳng AC,BD,Ị cắt nhau tại trung điểm K của chúng
b)
ta có:
góc ADB=góc DBC
AJ//IC=> góc AED=góc CFB
ta có:
\(\widehat{EAD}=180^o-\widehat{ADB}-\widehat{AED}\)
\(\widehat{FCB}=180^o-\widehat{DBC}-\widehat{CFB}\)
=>góc EAD=góc FCB
xét tam giác DEA và tam giác BFC có
AD=BC(gt)
góc ADB=góc DBC
góc EAD=góc FCB(cmt)
=>tam giác DEA=tam giác BFC(g.c.g)
=>AE=CF
c)
ta có:tứ giác AICJ là hình bình hành
=>AJ=IC
AE=CF
EJ=AJ-AE
IF=IC-FC
=>EJ=IF
EJ//IF
=>tứ giác IFJE là hình bình hành
d)
xét tam giác ACD có
DK là trung tuyến ứng với cạnh AC
AJ là trung tuyến ứng với cạnh CD
=>giao của DK và AJ là trọng tâm tam giác ACD
=>E là trọng tâm tam giác ACD
cm tương tự ta có: F là trọng tâm tam giác ABC
ta có:
E là trọng tâm tam giác ADC
=>EK=1/2DE
F là trọng tâm tam giác ABC
=>FK=1/2BF
DE=BF(tam giác DEA=tam giác BFC)
=>EK=FK
ta có:
=>FB= DE=2EK=EK+KF=EF
=>DE=EF=FB(đfcm)
A B C D I K E F
Bài làm
a) Vì ABCD là hình bình hành
=> AB = DC (1)
Mà I là trung điểm AB => AI = IB = 1/2AB (2)
Và K là trung điểm AC => DK = KC = 1/2DC (3)
Từ (1), (2) và (3) => AI = IB = DK = KC
Vì AB // DC (vì ABCD là hình bình hành)
=> AI // KC
Xét tứ giác AICK có:
AI // KC (cmt)
AI = KC (cmt)
=> AICK là hình bình hành.
b) Xét tam giác DCF có:
KE // FC (Do AK // IC vì AICK là hình bình hành)
K là tủng điểm DC
=> KE là đường trung bình.
=> E là trung đểm DF
=> DE = EF (4)
Xét tam giác BAE có:
IF // AE (Vì AK // IF do AICK là hình bình hành)
I là trung điểm AB
=> IF là đường trung bình.
=> F là trung điểm EB
=> EF = FB (5)
Từ (4) và (5) => DE = EF = FB.
c) Vì AB // DC
=> \(\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét tam giác BIF và tam giác DKE có:
IB = DK (cmt)
\(\widehat{ABD}=\widehat{BDC}\)(cmt)
DE = FB (cmt)
=> Tam giác BIF = tam giác DKE (c.g.c)
=> IF = EK (hai cạnh tương ứng)
Xét tứ giác IFKC có:
IF = EK (cmt)
IF // EK (Do IC // AK)
=> IFKC là hình bình hành.
Còn câu d và e thì xin kiếu. Vì hình rối + câu cuối mình không biết làm ^^"
a, Ta có:ABCD la hình bình hành=>AB=CD;AB//CD
mà E là trung diểm của AB;Flà trung điểm của CD
=>AE=EB=CF=DF(1)
VÌ AB//CD=>EB//DF(2)
Từ(1) và (2)=> EBFD là hình bình hành( theo dấu hiệu nhận biết hình bình hành)(đpcm)
b, Xét hbh ABCD có
AC cắt BD tại trung diểm củaAC và BD(1)
Xét hbh EBFD có EF cắt BD tại trung điểm của EF và BD(2)
từ (1) và (2)=>ba dường thang AC,BD,EF đồng quy
c,GỌI GIAO DIỂM CỦA AC,BD,EF LÀ O
Xét tam giác EOM và tam giác NOF có
góc EOM=góc NOF( đói đỉnh)
OE=OF(vi O là trung điểm cua EF)
goc MEF=góc NFE(vì CE//BF)
=>TAM GIAC EOM=TAMGIAC NOF
=.ME=NF(1)
TA CÓ ME//FN(2)
TU (1) VA(2)=>ENFM LA HBH
a) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AB\) // \(CD\), \(AD\) // \(BC\); \(AB = CD\); \(AD = BC\)
Mà \(IA = IB = \frac{{AB}}{2}\); \(KD = KC = \frac{{CD}}{2}\) (do \(I\),\(K\) là trung điểm)
Suy ra \(IA = IB = KD = KC\)
Xét tứ giác \(AKCI\) có:
\(AI = KC\) (cmt)
\(AI\) // \(KC\)
Suy ra \(AKCI\) là hình bình hành
Suy ra \(IC\) // \(AK\)
Hay \(IF\) // \(AE\)
Suy ra \(AEFI\) là hình thang
b) Vì \(ABCD\), \(AKCI\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\), \(BD\), \(KI\)
Suy ra \(OD = OB = \frac{1}{2}BD\) (1)
Xét tam giác \(ADC\) có hai trung tuyến \(AK\), \(DO\) cắt nhau tại \(E\)
Suy ra \(E\) là trọng tâm của tam giác
Suy ra \(ED = \frac{2}{3}DO\) (2)
Chứng minh tương tự ta có \(BF = \frac{2}{3}BO\) (3)
Từ (1), (2), (3) suy ra \(ED = BF = \frac{1}{3}BD\)
Suy ra \({\rm{EF}} = \frac{1}{3}BD\)
Vậy \(DE = EF = FB\)