K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{4}=\dfrac{CD}{6}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{CD}{6}=\dfrac{AD+CD}{4+6}=\dfrac{AC}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{4}=\dfrac{1}{2}\\\dfrac{CD}{6}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=2\left(cm\right)\\CD=3\left(cm\right)\end{matrix}\right.\)

Vậy: AD=2cm; CD=3cm

28 tháng 4 2019

A B C D E H M N K 1 1 1 2

a)Ta có : \(\widehat{A_1}+\widehat{M_1}=90^o;\widehat{M_1}+\widehat{BMC}=90^o\)\(\Rightarrow\widehat{A_1}=\widehat{BMC}\)

Xét \(\Delta ADM\)và \(\Delta BMC\)có : \(\widehat{A_1}=\widehat{BMC}\)\(\widehat{ADM}=\widehat{BCM}\)

\(\Rightarrow\Delta DAM\approx\Delta CMB\left(g.g\right)\)\(\Rightarrow\frac{AD}{DM}=\frac{CM}{BC}\)hay CM = \(\frac{5}{2}.5=12,5\)

b) \(\Delta AMB\)có EK là tia phân giác nên \(\frac{EA}{EB}=\frac{MA}{MB}\)( 1 )

Mặt khác : \(\widehat{B_1}+\widehat{EKB}=90^o;\widehat{B_1}+\widehat{A_2}=90^o\)nên \(\widehat{A_2}=\widehat{EKB}\)

\(\Delta BEK\approx\Delta BMA\left(g.g\right)\)\(\Rightarrow\frac{EK}{EB}=\frac{MA}{MB}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra EA = EK

c) Ta có : \(\widehat{BMH}=90^o\)nên \(BM\perp AH\)

Xét \(\Delta AHB\)có \(BM\perp AH\)\(HE\perp AB\)nên K là trực tâm \(\Rightarrow AN\perp BH\)

\(\Rightarrow\widehat{ANH}=90^o\)

xét \(\Delta AHN\)và \(\Delta BMH\)có : \(\widehat{ANH}=\widehat{BMH}=90^o;\widehat{MHN}\left(chung\right)\)

\(\Rightarrow\)\(\Delta AHN\approx\Delta BHM\left(g.g\right)\)\(\Rightarrow\)\(\frac{MH}{BH}=\frac{HN}{AH}\)hay \(\frac{MH}{HN}=\frac{BH}{AH}\)

Xét \(\Delta MHN\)và \(\Delta AHB\)có  : \(\widehat{MHN}\left(chung\right);\frac{MH}{HN}=\frac{BH}{AH}\)

\(\Rightarrow\)\(\Delta HMN\approx\Delta HBA\left(g.g\right)\) \(\Rightarrow\)\(\widehat{HMN}=\widehat{HBA}\)

Mà EA = EK nên \(\widehat{A_2}=45^o\) \(\Rightarrow\widehat{ABH}=90^o-\widehat{A_2}=45^o\)hay \(\widehat{HMN}=45^o\)

Ta có : \(\widehat{EMN}=180^o-\widehat{AME}-\widehat{HMN}=180^o-45^o-45^o=90^o\)

\(\Rightarrow EM\perp MN\)

Mặt khác : ME là tia phân giác \(\widehat{AMB}\) nên MN là tia phân giác \(\widehat{BMH}\)