K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
16 tháng 7 2020

O A E B F C G H D

Đặt OB = OD = a. Hãy chứng minh OE = a

 Tương tự, OF = OG = OH = a 

 Từ đó suy ra sáu điểm E, B, F, G, D, H cùng thuộc một đường tròn ( O;a )

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

29 tháng 7 2018

Chúc bạn học tốt nha!!!

8 tháng 8 2018

Hãy xác định hàm số y=ax+b, biết: đồ thị hàm số song song với đường thẳng y=2x và cắt trục hoành tại điểm có hoành độ bằng -3

28 tháng 11 2017

Ta có MNPQ là hình chữ nhật tâm O => M,N,P,Q cùng thuộc (O;OM)