K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

a) + CD = 2AD => AD = DI

=> ΔADI cân tại D ⇒DAIˆ=AIDˆ

+ AB // CD ⇒IAHˆ=AIDˆ⇒IAHˆ=IADˆ^

+ ΔADH có đg phân giác AE

⇒DEHE=ADAH⇒

b) + HI ⊥ AB => HI ⊥ CD

+ Lm tương tự câu a) ta cm đc : IBHˆ=IBCˆ

+ AD // BC ⇒BADˆ+ABCˆ=180o

⇒IABˆ+IBAˆ=90o⇒AIBˆ=90o

+ ΔABI vuông tại I, đg cao IH

⇒1HI2=1AI2+1BI2( theo hệ thức lượng trog Δ vuông )

3 tháng 8 2020

Tự vẽ hình

vẽ thêm Dựng đứng D đường thẳng vuông góc với DE cắt BC tại P 

Trong tam giác DPF ta có :(theo đlý số 4 hệ thức lượng)

----> 1/CD2 =1/DP2 +1/DF2 

mà CD = DA(cạnh hình vuông )

-----> ^D1 =^D2 (2 góc tương ứng )

---__> tam giác DAE= tam giác DCP 

------> DE=DP( 2 góc tương ứng ) ----> 1/ DA2 =1/DE2 + 1/DF2

11 tháng 7 2017

bạn tự vẽ hình nha 

qua A ke AK vuong goc voi BC (K thuoc BC)

áp dụng hệ thức lượng trong tam giác ABC vuông tại A 

\(\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{AK^2}\)(1)

dễ dàng cm đc IH là đường tb của tam giác AKB \(\Rightarrow IH=\frac{1}{2}AK\)

thay vao (1)ta co \(\frac{1}{4IH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\left(DPCM\right)\)

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
21 tháng 8 2015

Bạn tự vẽ hình nhé.

Qua \(C\) vẽ đường thẳng vuông góc với \(CE\) cắt \(AD\) ở  \(F\). Kẻ \(BH\perp CD,\) suy ra \(ABHD\) là hình chữ nhật. Do đó \(BH=AD=CD.\) Mặt khác \(\angle CFD=\angle BCH\) (cùng phụ với \(\angle DEC\)). Suy ra \(\Delta CDF=\Delta BHC\) (hai tam giác vuông bằng nhau theo trường hợp g.c.g). Thành thử \(CF=BC.\)

Xét tam giác vuông \(CEF\) có đường cao \(CD\), suy ra \(\frac{1}{CD^2}=\frac{1}{CF^2}+\frac{1}{CE^2}\to\frac{1}{AD^2}=\frac{1}{BC^2}+\frac{1}{CE^2}.\)  (ĐPCM).