K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

câu này khác mà

28 tháng 7 2017

(((Làm theo hướng đó đúng rồi.. Tiếp nà )))

HFCE là hình bình hành (tự c/m)

=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)

Mà EC//AK => HF//AK

 => Δ ANK =  Δ FNH (g.c.g)

=> AK=HF (2)

Từ (1) và (2) suy ra AK=EC. Mà AK//EC

=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC

=> O cũng là trung điểm của EK

=> Đpcm...

undefined

Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .

Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .

Ta có : OM , AH cùng vuông góc với EF nên OM // AH 

=> M là trung điểm CH ( Vì O là trung điểm của AC )

Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .

Suy ra : HF // CE // AK 

Dễ chứng minh △HNF = △KNA ( g.c.g )

Suy ra : Tứ giác AHFK là hình bình hành .

Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .

Suy ra : CKAE là hình chữ nhật .

Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )

27 tháng 7 2017

Thử nhé: Gọi O' là trung điểm của AC.

Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).

Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.

nên O'M là đường trung trực của EF. 

Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.

Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM. 

Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?

27 tháng 7 2017

Dù sao cũng cảm ơn nhiều !~

1 tháng 12 2021

TK

a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD

=> O là trung điểm của AC và BD

hay OA = OC và OD = OB

Xét tam giác ADC có:

AF là đường trung tuyến ( F là trung điểm của DC)

DO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến này cắt nhau tại M

=> M là trọng tâm của tam giác ADC

Tương tự, xét tam giác ABC có:

AE là đường trung tuyến ( E là trung điểm của BC)

BO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến cắt nhau tại N

=> N là trọng tâm của tam giác ABC

b, 

Nối M với C ; N với C

Có OM = 1313 OD

ON = 1313 OB

mà OD = OB (cm câu a)

=> OM = ON

Xét tứ giác ANCM có:

OM = ON (cmt)

OA = OC (cm câu a)

=> tứ giác ANCM là hình bình hành

=> AM//CN hay AF//CN

Xét ΔΔ DNC có:

DF=CF (gt)

MF//CN (AF//CN)

=> DM = MN (1)

Gọi I là giao điểm của EF và MC

Xét ΔΔ BCD có:

DF = CF (gt)

BE = CE (gt)

=> EF là đường trung bình của ΔΔ BCD

=> EF//BD

hay EI//BD

Xét ΔΔ BMC có:

EI//BM ( M∈∈ BD)

BE = CE (gt)

=> MN = NB (2)

Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại

Từ (1) và (2) suy ra :

DM = MN =NB (đpcm)

 

1 tháng 12 2021

hơi dài