Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BAHˆ+AHBˆ+HBAˆ=1800BAH^+AHB^+HBA^=1800
HACˆ+ACHˆ+CHAˆ=1800HAC^+ACH^+CHA^=1800
mà AHBˆ=CHAˆ=900AHB^=CHA^=900
HBAˆ=ACHˆHBA^=ACH^ ( vì tam giác ABC là tam giác cân)
⇒BAHˆ=HACˆ⇒BAH^=HAC^ (đpcm)
c) Xét ΔAEHΔAEH và ΔADHΔADH, ta có:
AEHˆ=ADHˆ(900)AEH^=ADH^(900)
AH chung
EAHˆ=DAHˆEAH^=DAH^ ( câu a)
⇒ΔAEH=ΔADH⇒ΔAEH=ΔADH ( cạnh huyền - góc nhọn)
⇒AE=AD⇒AE=AD ( 2 cạnh tương ứng)
d) Gọi I là giao điểm của AH và ED
Vì ΔAEH=ΔADHΔAEH=ΔADH nên
DHAˆ=EHAˆDHA^=EHA^ ( 2 góc tương ứng)
HE=HD ( 2 cạnh tương ứng)
Xét ΔIEHΔIEH và ΔIDHΔIDH, ta có:
HE=HD (cmt)
DHAˆ=EHAˆDHA^=EHA^ (cmt)
IH chung
⇒ΔIEH=ΔIDH⇒ΔIEH=ΔIDH (c-g-c)
⇒EIHˆ=DIHˆ⇒EIH^=DIH^ ( 2 góc tương ứng)
Ta có: EIHˆ+DIHˆ=1800EIH^+DIH^=1800 ( kề bù)
⇒EIHˆ=DIHˆ=18002=900⇒EIH^=DIH^=18002=900
hay IH⊥EDIH⊥ED
Ta có: AH⊥BCAH⊥BC mà I∈AH⇒IH⊥BCI∈AH⇒IH⊥BC
Vì IH⊥BCIH⊥BC mà IH⊥EDIH⊥ED⇒BC//ED⇒BC//ED (đpcm)
bạn rảnh vcl bạn đi hỏi mà tự làm để mọi người cho đúng là rảnh hơi.
Ta có:
AB đồng dạng với AD với tỉ số tỉ số k = 1 (vì hai cạnh đối sát của hình bình hành bằng nhau và song song).
Vậy diện tích tam giác ABH bằng diện tích tam giác ADK với tỷ số k.
Như vậy: S_ABH = k.S_ADK.
Tuy nhiên, ta cũng có: S_ABH = AB.AH và S_ADK = AD.AK (vì diện tích một tam giác bằng nửa tích các cạnh tạo thành đôi một với nó).
Vậy ta có: AB.AH = AD.AK.
Đây chính là điều cần chứng minh.