K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D F K H E

a,\(\Delta AHB\&\Delta AEC\)có:  \(\widehat{A}chung,\widehat{AEC}=\widehat{AHB}=90^o\)

\(\Rightarrow\Delta AHB\infty\Delta AEC\left(g.g\right)\Rightarrow\frac{AH}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AH.AC\)

b,\(\Delta AKD\&\DeltaÀFC\)CÓ: \(\widehat{A}chung,\widehat{AFC}=\widehat{AKD}=90^o\)

\(\Rightarrow\Delta AKD\infty\DeltaÀFC\left(g.g\right)\Rightarrow\frac{AK}{AF}=\frac{AD}{AC}\Rightarrow AD.AF=AK.AC\)

c, Vì ABCD là hbh => AB=DC

   --------------------- => AB//CD => GÓC BAC=ACD (SO LE TRONG)

Xét tam giác ABH  và tam giác CDK có:

Tam giác ABH vuông tại H

----------- CDK ------------- K

cạnh huyền AB=CD

góc nhọn BAC=ACD

=> tam giác ABH = tam giác CDK

=> AH=KC

ta có: AC = AH + HC

Mà: AH=KC

=> AC = AH+HK+AH

=> AC = AH + AK

Ta có: AB.AE+AD.AF = AH.AC+AK.AC = AC.(AH+AK) = AC.AC = AC2 

30 tháng 3 2018

a) Ta chứng minh

 

b) Tương tự câu a ta chứng minh được  

Þ AD.AF =AK.AC (2)

b) Từ (1) ta có AB.AE = AC.AH (3)

Lấy (3) + (2) ta được AD.AF + AB.AE = AC2 (ĐPCM)

25 tháng 2 2019

Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath

Em xem link bài làm nhé!

26 tháng 3 2019

a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg) 
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1) 
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2). 
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2 
Vậy AB.AE + AD.AF = AC^2.

25 tháng 2 2019

Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

25 tháng 2 2019

Kẻ BH _I_ AC (H \in∈ AC)

Tam giác HAB vuông tại H và tam giác EAC vuông tại E có:

HAB = EAC

=> Tam giác HAB ~ Tam giác EAC (g - g)

=> \dfrac{HA}{EA}=\dfrac{AB}{AC}EAHA​=ACAB

=> AB . AE = AC . AH

Tam giác HCB vuông tại H và tam giác FAC vuông tại F có:

HCB = FAC (2 góc so le trong, AD // BC)

=> Tam giác HCB ~ Tam giác FAC (g - g)

=> \dfrac{HC}{FA}=\dfrac{CB}{AC}=\dfrac{DA}{AC}FAHC​=ACCB​=ACDA (CB = DA do ABCD là hình bình hành)

=> DA . FA = HC . AC

Ta có: AB . AE + AD . AF = AC . AH + HC . AC = AC . (AH + HC) = AC . AC = AC2

13 tháng 3 2022

 

Dựng BG ⊥ AC.

Xét ∆ BGA và ∆ CEA, ta có:

ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘

ˆAA^ chung

Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)

Suy ra: ABAC=AGAEABAC=AGAE

Suy ra: AB.AE = AC.AG   (1)

Xét ∆ BGC và ∆ CFA, ta có:

ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘

ˆBCG=ˆCAF;BCG^=CAF^  (so le trong vì AD // BC)

Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)

Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG

Mà BC = AD (tính chất hình bình hành )

Suy ra: AD.AF = AC.CG            (2)

Cộng từng vế của đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)

Mà AG+CG=ACAG+CG=AC  nên AB.AE+AD.AF=AC2

13 tháng 3 2022

có gì sai mong bạn sửa lại nha

 

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF