Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình bình hành ABCD có AClà phân giác của góc DAB
nên ABCD là hình bình hành
Suy ra: AB=BC=CD=DA
a: góc ABM=góc CBM
=>góc ABM=góc AMB
=>ΔABM cân tại A
b: Xét ΔBAM và ΔDCN có
góc BAM=góc DCN
BA=DC
góc ABM=góc CDN
=>ΔBAM=ΔDCN
=>BM=DN và AM=CN
=>BN=DM
=>DMBN là hình bình hành
Bài 1:
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ=NP và MQ//NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2=BD/2(3)
Từ (1) và (3) suy ra MQ=MN
Xét tứ giác MQPN có
MQ//PN
MQ=PN
Do đó: MQPN là hình bình hành
mà MQ=MN
nên MQPN là hình thoi
Suy ra: MP⊥NQ
AB = 5cm
=> BC = 12 - 5 = 7cm
=> CD = 12 - 7 = 5cm
=> AD = 12 - 5 = 7cm
Vì AB = CD, BC = AD, mà AB đối CD, BC đối AD
=> Tứ giác ABCD là hbh
sửa lại : AC là phân giác của góc DAB
a: Vì ABCD là hình bình hành
nên AB=CD: AD=BC
mà AB=BC
nên AB=CD=AD=BC
b: Xét hình bình hành ABCD có AC vuông góc với BD
nên ABCD là hình thoi
=>AB=BC=CD=AD
c: Xét hình bình hành ABCD có AC là phân giác của góc BAD
nên ABCD là hình thoi
=>AB=BC=CD=AD