Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí về đường trung tuyến:
OA2 = –
Thay OA = , AB = a
AD = BC = b và BD = m => dpcm
Lấy M là trung điểm của CD
\(AC^2-AD^2=BC^2-BD^2\)
<=> \(\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\left(\overrightarrow{AC}+\overrightarrow{AD}\right)=\left(\overrightarrow{BC}-\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)
<=> \(2.\overrightarrow{DC}.\overrightarrow{AM}=2.\overrightarrow{DC}.\overrightarrow{BM}\)
<=> \(2.\overrightarrow{DC}.\left(\overrightarrow{AM}-\overrightarrow{BM}\right)=0\)
<=> \(2.\overrightarrow{DC}.\overrightarrow{AB}=0\)
<=> DC vuông góc với AB
1/Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006
2/Cho tam giác ABC cân tại A. D là 1 điểm nằm trong tam giác, biết góc ADB > góc ADC. Chứng minh: DB<DC
giúp e với
Gọi O là giao điểm của AC va BD
\(AO^2=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)
⇒\(\dfrac{n^2}{4}=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)
⇒\(n^2=2\left(a^2+b^2\right)-m^2\)
⇒⇒\(n^2+m^2=2\left(n^2+m^2\right)\)
Câu 1:
a: =x^2+6x+9+4
=(x+3)^2+4>0
b: \(=x^2-4x+4+x^2+4xy+4y^2+9=\left(x-2\right)^2+\left(x+2y\right)^2+9>=9\)
Dấu = xảy ra khi x=2 và y=-x/2=-2/2=-1
Lời giải:
Ta có:
\(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA}=(\overrightarrow{FA}+\overrightarrow{AI})+(\overrightarrow{DA}+\overrightarrow{AB})\)
\(=\overrightarrow{FI}+\overrightarrow{DB}(1)\)
Vì $I,F$ lần lượt là trung điểm của $BC,CD$ nên $FI$ là đường trung bình của tam giác $DBC$
\(\Rightarrow FI\parallel DB, FI=\frac{1}{2}DB\)
\(\Rightarrow \overrightarrow{FI}=\frac{1}{2}\overrightarrow{DB}(2)\)
Từ \((1);(2)\Rightarrow \overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA}=\frac{1}{2}\overrightarrow{DB}+\overrightarrow{DB}=\frac{3}{2}\overrightarrow{DB}\)
\(\Rightarrow 2(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA})=3\overrightarrow{DB}\) (đpcm)
Ta có: \(AC^2+BD^2=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)^2+\left(\overrightarrow{BC}+\overrightarrow{BA}\right)^2\)
\(=AB^2+AD^2+2\overrightarrow{AB}.\overrightarrow{AD}+BC^2+BA^2+2\overrightarrow{BA}.\overrightarrow{BC}\)
\(=AB^2+AD^2+BC^2+AD^2+2\overrightarrow{AB}\left(\overrightarrow{AD}-\overrightarrow{BC}\right)\)
\(=AB^2+AD^2+BC^2+AD^2\)