K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021
1 tháng 11 2020

a. Tứ giác ABCD là hình bình hành.

\(\Rightarrow AB=CD\)(tính chất hình bình hành)

và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)

Xét \(\Delta AMB\)và \(\Delta CND\)có:

\(AB=CD\)(cmt)

\(\widehat{ABM}=\widehat{CDN}\)(cmt)

\(BM=DN\)(GT)

\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.