K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2015

Viết công thức tính ra đc 1/4.a^2.(BM^2+CM^2)

Ta có: BM^2+CM^2=(BM+CM)^2 - 2.BM.CM

Mà theo cô-si: BM.CM=<(BM+CM)^2/4=a^2/4

Dấu"=" xảy ra khi BM=CM

Vậy GTNN khi M là trung điểm của BC

20 tháng 8 2015

a) xet tam giac AEH nt (O) co AH la duong kinh -> tam giac AEH vuong tai H-> AEH=90

cmtt tam giac ADH vuong tai D-> ADH=90

xet tu giac AEHD ta co : ADH=AEH=EAC=90-> AEHD la hcn

xet hcn AEHD co ED va AH la 2 duongcheo cat nhau tai trung diem moi duong ma O la trung diem AH-> Ola trung diemED-> O.D.E thang hang

b) xet tam giac ABH vuong tai H co HE la duong cao-> AH2=AE.AB ( HTL trong tam giac vuong)

cmtt  AH2= AD.AC ( HTL trong tam giac vuong AHC co HD la duong cao)

==> AE.AB=AD.AC=AH2 

ma AH=ED ( AEHD la hcn)

mem AE.AB=AD.AC=DE2

c) ta co

goc NEH= goc EAH ( 2 goc nt cung chan cung EH cua (O))

goc EAH= goc ACH ( 2 goc cung phu goc HAC)

goc ACH= goc EHN ( 2 goc dong vi vi EH//AC)

--> goc NEH= goc EHN-> tam giac ENH can tai N--> EN=NH

taco

goc EBN+ goc EHN =90 ( 2 goc ke phu)

goc BEN+gpc NEH =90 ( tam giac BEH vuong tai E)

goc EHN=goc NEH ( tam giac EHN can tai N)

-> goc EBN=goc BEN=> tam giac BEN can tai N-> BN=EN

ma EN=NH ( cmt)

mem BN=NH-> N la tring diem BH

cmtt M la trung diem HC

d) ta co : EN =1/2 BH ( EN la duong trung tuyen ung canh huyen BH cua tam giac BEH vuong tai E)

              DM=1/2 HC ( DM la duong trung tuyen ung canh huyenHC cua tam giac HDC vuong tai D )

             ED=AH ( AEHD la hcn)

Goi I la trung diem BC

cm tam giac BAC nt duong tron tam I --> IA=IB -> tam giac ABI can tai I co goc B=60-> tam giac ABI la tam giac deu-> AB=R

sin60 =AH/AB==> AH=AB. sin60 = R\(\frac{\sqrt{3}}{2}=\frac{R\sqrt{3}}{2}\)

S =1/2 ED ( EN+DM )

S=1/2 AH ( 1/2 BH+1/2 HC)

S=1/4 AH ( BH+HC)

S=1/4 AH.BC

S=1/4 .\(\frac{R\sqrt{3}}{2}.2R=\frac{R^2\sqrt{3}}{4}\)

( vui long CCBG k copy)

17 tháng 1 2016

1) ta có góc BAF+góc DAE=90 ĐỘ

     góc DAK +góc DAE=90 ĐỘ

=> góc BAF= góc DAK 

XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G

=>tam giác ABF=tam giác DAK

==>AK=AF  => tam giác AKF cân tại A

2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)

TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)

TỪ (1) và (2) ==> điều cần chứng minh

3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao 

==> AI vuông góc với KF  

DO ĐÓ góc AIF=90 độ

tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh

đợi một tí thí nữa mk giải típ mệt quá

17 tháng 1 2016

sao dài thế

 

1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H. a. Cm CH//MB b. Cm BC vuông góc với AM và MA.MC=MB2 c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O) d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị...
Đọc tiếp

1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H.

a. Cm CH//MB

b. Cm BC vuông góc với AM và MA.MC=MB2

c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O)

d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị lớn nhất.

2.Cho đường tròn tâm O đường kính AB=2R.Từ trung điểm H của đoạn OB kẻ đường thẳng vuông góc với AB cắtđường tròn tâm O tại C và D.

a. Chứng minh HC=HD và tứ giác ODBC là hình thoi.

b. Tính số đo góc BOC.

c. Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O).Tính MC theo R.

d. Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh: HI.HD+HB.HM=R2

0