Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xet tam giac AEH nt (O) co AH la duong kinh -> tam giac AEH vuong tai H-> AEH=90
cmtt tam giac ADH vuong tai D-> ADH=90
xet tu giac AEHD ta co : ADH=AEH=EAC=90-> AEHD la hcn
xet hcn AEHD co ED va AH la 2 duongcheo cat nhau tai trung diem moi duong ma O la trung diem AH-> Ola trung diemED-> O.D.E thang hang
b) xet tam giac ABH vuong tai H co HE la duong cao-> AH2=AE.AB ( HTL trong tam giac vuong)
cmtt AH2= AD.AC ( HTL trong tam giac vuong AHC co HD la duong cao)
==> AE.AB=AD.AC=AH2
ma AH=ED ( AEHD la hcn)
mem AE.AB=AD.AC=DE2
c) ta co
goc NEH= goc EAH ( 2 goc nt cung chan cung EH cua (O))
goc EAH= goc ACH ( 2 goc cung phu goc HAC)
goc ACH= goc EHN ( 2 goc dong vi vi EH//AC)
--> goc NEH= goc EHN-> tam giac ENH can tai N--> EN=NH
taco
goc EBN+ goc EHN =90 ( 2 goc ke phu)
goc BEN+gpc NEH =90 ( tam giac BEH vuong tai E)
goc EHN=goc NEH ( tam giac EHN can tai N)
-> goc EBN=goc BEN=> tam giac BEN can tai N-> BN=EN
ma EN=NH ( cmt)
mem BN=NH-> N la tring diem BH
cmtt M la trung diem HC
d) ta co : EN =1/2 BH ( EN la duong trung tuyen ung canh huyen BH cua tam giac BEH vuong tai E)
DM=1/2 HC ( DM la duong trung tuyen ung canh huyenHC cua tam giac HDC vuong tai D )
ED=AH ( AEHD la hcn)
Goi I la trung diem BC
cm tam giac BAC nt duong tron tam I --> IA=IB -> tam giac ABI can tai I co goc B=60-> tam giac ABI la tam giac deu-> AB=R
sin60 =AH/AB==> AH=AB. sin60 = R\(\frac{\sqrt{3}}{2}=\frac{R\sqrt{3}}{2}\)
S =1/2 ED ( EN+DM )
S=1/2 AH ( 1/2 BH+1/2 HC)
S=1/4 AH ( BH+HC)
S=1/4 AH.BC
S=1/4 .\(\frac{R\sqrt{3}}{2}.2R=\frac{R^2\sqrt{3}}{4}\)
( vui long CCBG k copy)
1) ta có góc BAF+góc DAE=90 ĐỘ
góc DAK +góc DAE=90 ĐỘ
=> góc BAF= góc DAK
XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G
=>tam giác ABF=tam giác DAK
==>AK=AF => tam giác AKF cân tại A
2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)
TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)
TỪ (1) và (2) ==> điều cần chứng minh
3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao
==> AI vuông góc với KF
DO ĐÓ góc AIF=90 độ
tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh
đợi một tí thí nữa mk giải típ mệt quá
Viết công thức tính ra đc 1/4.a^2.(BM^2+CM^2)
Ta có: BM^2+CM^2=(BM+CM)^2 - 2.BM.CM
Mà theo cô-si: BM.CM=<(BM+CM)^2/4=a^2/4
Dấu"=" xảy ra khi BM=CM
Vậy GTNN khi M là trung điểm của BC