Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}m^2x+my=m\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=-1\\x+my=m+1\end{matrix}\right.\)
- Với \(m=\pm1\Rightarrow0.x=-1\) hệ vô nghiệm
- Không tồn tại m để hệ có vô số nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
Để hệ vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}< >\dfrac{2m}{m+6}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}< >\dfrac{2m}{m+6}\\\dfrac{m}{4}< >\dfrac{2m}{m+6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\2m^2< >m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\notin\left\{2;-\dfrac{3}{2}\right\}\end{matrix}\right.\Leftrightarrow m=-2\)
Để hệ vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{2m}{m+6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\2m^2=m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-4m+3m-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)=0\end{matrix}\right.\Leftrightarrow m=2\)
a) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{4}\ne\dfrac{-1}{-m}\)
\(\Leftrightarrow-m^2\ne-4\)
\(\Leftrightarrow m^2\ne4\)
hay \(m\notin\left\{2;-2\right\}\)
c) Để hệ phương trình vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}\ne\dfrac{2m}{6+m}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{m}{4}\ne\dfrac{2m}{6+m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\left(m+6\right)\ne8m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2+6m-8m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-2m\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\left(m-2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left\{{}\begin{matrix}m\ne0\\m-2\ne0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left\{{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=-2\)
b) Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{6+m}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{m}{4}=\dfrac{2m}{6+m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\left(6+m\right)=8m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\6m+m^2-8m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-2m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\left(m-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=2\)
Hùng Nguyễn làm giúp e đi anh hùng ới ơi e h ngu cái hpt quá r
Đoàn Gia Khánh tui cũng k giỏi giang gì về cái hpt :vv