Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)
\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)
Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)
\(=m^2-2m+1+m^2+4m+4\)
\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)
\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2
hệ pt trên tương đương:\(\hept{\begin{cases}x=3-ky\\k\times\left(3-ky\right)+4y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3-ky\\-y\left(k^2-4\right)=6-3k\end{cases}}\)
*với k=2 ,hệ pt có vô số nghiệm.*với x=-2,hệ pt vô nghiệm.* với \(x\ne\pm2,\)hệ pt tương đương:
\(\hept{\begin{cases}x=3-ky\\y=\frac{6-3k}{-\left(k^2-4\right)}\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-ky\\y=\frac{3}{k+2}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=3-\frac{3k}{k+2}\\y=\frac{3}{k+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{k+2}\\y=\frac{3}{k+2}\end{cases}}\)
vậy \(\hept{\begin{cases}x>1\\y>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{6}{k+2}>1\\\frac{3}{k+2}>0\end{cases}\Leftrightarrow\hept{\begin{cases}k+2< 6\\k+2>0\end{cases}}}\)\(\Leftrightarrow-2< k< 4\)
VẬY HỆ PHƯƠNG TRÌNH ĐÃ CHO CÓ NGHIỆM X>1,Y>O KHI VÀ CHỈ KHI -2<K<4 VÀ K\(\ne2\)
\(\hept{\begin{cases}2x-y=k\\4x-ky=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-y=k\\\frac{4\left(x-1\right)}{y}=k\end{cases}}\)
\(\Rightarrow2xy-y^2=4x-4\)
\(\Rightarrow2xy-y^2-4x+4=0\)
\(\Leftrightarrow2x\left(y-2\right)-\left(y-2\right)\left(y+2\right)=0\)
\(\Leftrightarrow\left(2x-y-2\right)\left(y-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)(t/m)
x^2-y=4-2=2
Vậy \(k=2.2-2=2\)
Vậy k=2