Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
hệ phương trình nhận x=1 , y=\(1+\sqrt{3}\)là nghiệm
\(\Leftrightarrow\hept{\begin{cases}a+\left(1+\sqrt{3}\right)b=\sqrt{3}\\1+\left(1+\sqrt{3}\right)a=\sqrt{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{\sqrt{3}-\left(\frac{\sqrt{3}-1}{2}\right)^2}{1+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{(\sqrt{3}-1)^2}{2}\\b=\frac{2.\sqrt{3}-2}{1+\sqrt{3}}\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{2\left(\sqrt{3}-1\right)^2}{2}\end{cases}}}\)
Bạn áp dụng các kết luận sau:
Hệ phương trình \(\hept{\begin{cases}ax+by=c\\a'x+b'y=c'\end{cases}}\left(a,b,c,a',b',c'\ne0\right)\)
+) Vô nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
+) Có nghiệm duy nhất nếu \(\frac{a}{a'}\ne\frac{b}{b'}\)
+) Có vô số nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Như vậy hệ phương trình \(\hept{\begin{cases}mx+4y=20\\x+my=10\end{cases}}\left(m\ne0\right)\)
+) Vô nghiệm nếu \(\frac{m}{1}=\frac{4}{m}\ne\frac{20}{10}\Rightarrow\hept{\begin{cases}m^2=4\\m\ne2\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm2\\m=2\end{cases}}\Rightarrow m=-2\)
+) Có nghiệm duy nhất nếu \(\frac{m}{1}\ne\frac{4}{m}\Rightarrow m^2\ne4\Rightarrow m\ne\pm2\)
+) Vô số nghiệm nếu \(\frac{m}{1}=\frac{4}{m}=\frac{20}{10}\Rightarrow m=2\)
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)
\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)
Xét \(a+b+c=0\), ta có :
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Xét \(x+y-1=0\),ta có :
\(x=1-y\)
\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)
sai