Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Điều kiện cần : Giả sử hệ đã cho có nghiệm duy nhất là (x;y), khi đó, dễ thấy (y;x) cũng là nghiệm của hệ. Do tính duy nhất suy ra y = x, thay vào (1) ta có :
\(x^2+x^2=m\left(x-1\right)\Leftrightarrow2x^2-mx+m=0\left(3\right)\)
Vì (3) có nghiệm kép nên \(\Delta=m^2-8m=0\Leftrightarrow\left[\begin{array}{nghiempt}m=0\\m=8\end{array}\right.\)
* Điều kiện đủ :
+ Khi m = 0 hệ phương trình đã cho trở thành
\(\begin{cases}xy+x^2=0\\xy+y^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x\left(y+x\right)=0\\y\left(x+y\right)=0\end{cases}\) (4)
Dễ thấy (1;-1) và (2;-2) là nghiệm (4), vậy m=0 không thỏa mãn đề bài
+)khi m=8 hệ phương trình đã trở thành \(\begin{cases}xy+x^2=8y-8\left(5\right)\\xy+y^2=8x-8\left(6\right)\end{cases}\)
lấy (5) trừ (6) được
\(x^2-y^2=8\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+8\right)=0\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=y\\y=-8-x\end{array}\right.\)
khi y=x thay vào (5) ta được \(2x^2-8x+8=0\Leftrightarrow x=2\Rightarrow y=2\)khi y=-8-x, thay vào (5) ta được
\(x\left(-8-x\right)+x^2=8\left(-8-x\right)-8\Leftrightarrow-8x=-64-8x-8\)(VÔ NGHIỆM
kết luận : Hệ phương trình có nghiệm duy nhất khi và chỉ khi m=8
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?