Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ x+ 2y = m => x = m -2y. Thế vào phương trình 2x +my = 8 ta được
2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m - 2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất
Vậy hệ đã cho có nghiệm với mọi m, và khi m khác 4 thì hệ có nghiệm duy nhất
Wryyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Rút y từ phương trình số 2 rồi thay vào phương trrình 1 => 3x + m^2x - m = 5 => m^2x+3x=m+5 => x(m^2+3)=m+5
Lời giải:
a.
Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$
$\Leftrightarrow x+2m=7$
$\Leftrightarrow x=7-2m$
$y=2-x=2-(7-2m)=2m-5$
Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$
Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$
Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:
$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$
Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$
b.
$xy>0$
$\Leftrightarrow (7-2m)(2m-5)>0$
$\Leftrightarrow 7> 2m> 5$
$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$
Do $m$ nguyên nên $m=3$
Thử lại thấy đúng.
`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:
`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`
`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`
`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`
`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`
`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`
`b){((m-1)x-2y=1),(3x+my=1):}`
`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`
`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`
`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`
`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`
Mà `-m^2+m-6` luôn `ne 0`
`=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`
`=>AA m` thì hệ ptr có `1` nghiệm duy nhất
`c){((m-1)x-2y=1),(3x+my=1):}`
`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`
Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`
`=[-3m-6-12+3m]/[-3(m^2-m+6)]`
`=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`
Vì `(m-1/2)^2+23/4 >= 23/4`
`<=>6/[(m-1/2)^2+23/4] <= 24/23`
Hay `x-y <= 24/23`
Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx+2y=1\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow x=2+my\)(3)
Thế (3) vào (2) ta được:
\(m\left(2+my\right)+2y=1\)
\(\Rightarrow2m+m^2y+2y=1\)
\(\Rightarrow y\left(m^2+2\right)=1-2m\)
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)(luôn đúng)
Vậy hệ phương trình luôn có nghiệm duy nhất với mọi tham số m
x + y = 5 => x = 5 -y . thay vào ptrinh còn lại ta đc: 3.(5 - y) - m2y = 3
=> 15 - 3y - m2y - 3 = 0 => - (m2 + 3)y + 12 = 0 => (m2 + 3)y = 12 => y = 12/ (m2 + 3) (Vì m2 \(\ge0\) nên m2 + 3 \(\ge3>0\) với mọi m )
=> x = 15 - y = 15 - 12/ (m2 + 3) = (15m2 + 33)/(m2 + 3)
vậy với mọi m hệ luôn có ngiêm x; y tính theo m như trên