\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2019

A B C D H M F E

Do M là trung điểm BH \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_H=-1\\y_B=2y_M-y_H=-2\end{matrix}\right.\) \(\Rightarrow B\left(-1;-2\right)\)

\(\overrightarrow{MH}=\left(\frac{8}{5};\frac{4}{5}\right)\)

Gọi F là trung điểm BC \(\Rightarrow AF//CE\Rightarrow AF\perp BH\Rightarrow\) đường thẳng AH nhận \(\overrightarrow{n_{AH}}=\left(2;1\right)\) là 1 vtpt

Mặt khác AF//CE, AF đi qua trung điểm F của BC nên AF là đường trung bình tam giác BCH => AF đi qua M

Phương trình \(AF\): \(2\left(x-\frac{3}{5}\right)+1\left(y+\frac{6}{5}\right)=0\Leftrightarrow2x+y=0\)

\(\Rightarrow\) Gọi \(A\left(a;-2a\right)\)

Xét tam giác vuông \(ABM\)\(BCH\)\(\widehat{A}=\widehat{B}\) (góc có cạnh tương ứng vuông góc); AB=BC \(\Rightarrow ABM=BCH\left(ch-gn\right)\Rightarrow AM=BH\)

\(\Rightarrow\left|\overrightarrow{MA}\right|=\left|\overrightarrow{BH}\right|\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-\frac{3}{5};-2a+\frac{6}{5}\right)\\\overrightarrow{BH}=\left(-\frac{16}{5};-\frac{8}{5}\right)\end{matrix}\right.\)

\(\Rightarrow\left(a-\frac{3}{5}\right)^2+\left(2a+\frac{6}{5}\right)^2=\left(\frac{16}{5}\right)^2+\left(\frac{8}{5}\right)^2\)

\(\Rightarrow a=...\Rightarrow A\left(...\right)\Rightarrow\) phương trình AB

20 tháng 5 2017

a) \(G\left(-1;-\dfrac{4}{3}\right);H\left(11;-2\right);I\left(-7;-1\right)\)

b) \(\overrightarrow{IH}=3\overrightarrow{IG}\) suy ra I, G, H thẳng hàng

c) \(\left(x+7\right)^2+\left(y+1\right)^2=85\)

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\) \(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\) Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y) \(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\) Theo tính chất đường phân giác ta...
Đọc tiếp

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\)

Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y)

\(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\)

Theo tính chất đường phân giác ta có:

\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{3}{4}\)

\(\Rightarrow\overrightarrow{DB}=-\frac{3}{4}\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{4}-x=-\frac{3}{4}\left(2-x\right)\\-y=-\frac{3}{4}\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Rightarrow D\left(1;0\right)\)

Gọi BJ là đường phân giác trong góc B với J thược AD. Gọi toạ độ điểm J là J(x;y).

\(\overrightarrow{BA}=\left(-\frac{9}{4};3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{BD}=\left(\frac{3}{4};0\right)\Rightarrow BD=\frac{3}{4}\)

Theo tính chất đường phân giác góc B ta có:

\(\frac{JA}{JD}=\frac{BA}{BD}\)

\(\Rightarrow\)\(\frac{\overrightarrow{JA}}{\overrightarrow{JD}}=-5\)

\(\Rightarrow\overrightarrow{JA}=-5\overrightarrow{JD}\)

\(\Rightarrow\left\{{}\begin{matrix}-2-x=-5\left(1-x\right)\\3-y=-5\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\end{matrix}\right.\)

\(J\left(\frac{1}{2};\frac{1}{2}\right)\)

Vì J là giao điểm của hai đường phân giác trong góc A và góc B nên J là tâm đường tròn nội tiếp tam giác ABC

0
I Đại Số bài 1 giải phương trình a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\) Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm. Bài 3 giải phương...
Đọc tiếp

I Đại Số

bài 1 giải phương trình

a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\)

Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm.

Bài 3 giải phương trình

a)\(\left(x-1\right)^2=\left(2x+5\right)^2\)

b)\(\frac{\left(x-2\right)^3}{2}=x^2-4x+4\)

c)\(x^3+8=-2x\left(x+2\right)\)

d)\(x^2+8x-5=0\)

e)\(\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)

g)\(\left(4x-5\right)^2+7\left(4x-5\right)-8=0\)

h)\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

j)\(2x\left(8x-1\right)\left(8x^2-x+2\right)-126=0\)

II HÌNH HỌC

Bài1: Cho tam giác ABC có MN//BC và \(\frac{AM}{AB}=\frac{1}{2};MN=3cm\) . Tính BC

Bài 2: Cho hình thang ABCD(AB//CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM=ON.

Bài 3: Trên các cạnh của AB, AC của ΔABC lần lượt lấy điểm M và N sao cho \(\frac{AM}{MB}=\frac{AN}{NC}\). Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh KM=KN

Bài 4: Cho hình vuông ABCD cạnh 6cm. Trên tia đối của AD lấy điểm I sao cho AI=2cm. IC cắt AB tại K. Tính độ dài IK và IC

1
19 tháng 2 2020
https://i.imgur.com/5ZMFwF5.jpg