K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

a) ta có : \(\overrightarrow{CO}-\overrightarrow{OB}=\overrightarrow{CO}+\overrightarrow{BO}=\overrightarrow{CO}+\overrightarrow{OD}=\overrightarrow{CD}\)

\(\Rightarrow\left|\overrightarrow{CO}-\overrightarrow{OB}\right|=\left|\overrightarrow{CD}\right|=CD=AB=5\left(cm\right)\)

mấy câu còn lại lm tương tự

5 tháng 8 2018

a) CO-OB=OA+BO=BA

b) AB-BC=DC+CB=DB

c) DA-DB+DC=BA+DC=BA+AB=0

tất cả đều là vecto nha bạn

a: \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=\left|\overrightarrow{0}+\overrightarrow{0}\right|=0\)

b: \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)

d: \(\left|\overrightarrow{AB}-\overrightarrow{AD}\right|=\left|\overrightarrow{AD}+\overrightarrow{DB}-\overrightarrow{AD}\right|=DB=a\sqrt{2}\)

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JC}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(1)

ta có : \(\overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JD}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JC}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(2)

từ (1) (2) ta có \(2\overrightarrow{IJ}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\left(đpcm\right)\)

c) ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

\(2\overrightarrow{OI}+2\overrightarrow{OJ}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OI}+\overrightarrow{OJ}=\overrightarrow{0}\)

\(\Rightarrow O\) là trung điểm \(IJ\)

a: \(\overrightarrow{EF}=\overrightarrow{EO}+\overrightarrow{OF}\)

\(=-\overrightarrow{OE}+\overrightarrow{OF}\)

\(=-\dfrac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)+\dfrac{1}{2}\left(\overrightarrow{OC}+\overrightarrow{OD}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{OD}-\overrightarrow{OB}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)

b: \(VT=\left(\overrightarrow{OA}+\overrightarrow{OB}\right)+\left(\overrightarrow{OC}+\overrightarrow{OD}\right)\)

\(=2\cdot\overrightarrow{OE}+2\cdot\overrightarrow{OF}=\overrightarrow{0}\)

22 tháng 7 2018

a) ta có : \(2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\left(đpcm\right)\)

b) ta có : \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=2\overrightarrow{OA}+2\overrightarrow{OM}=2\left(\overrightarrow{OA}+\overrightarrow{OM}\right)=2\left(2\overrightarrow{OD}\right)=4\overrightarrow{OD}\left(đpcm\right)\)

9 tháng 1 2018

Gọi O là giao điểm của AC va BD

\(AO^2=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)

\(\dfrac{n^2}{4}=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)

\(n^2=2\left(a^2+b^2\right)-m^2\)

⇒⇒\(n^2+m^2=2\left(n^2+m^2\right)\)

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AP}+\overrightarrow{PQ}+\overrightarrow{QB}+\overrightarrow{DP}+\overrightarrow{PQ}+\overrightarrow{QC}\)

\(=2\overrightarrow{PQ}+\left(\overrightarrow{AP}+\overrightarrow{DP}\right)+\left(\overrightarrow{QB}+\overrightarrow{QC}\right)=2\overrightarrow{PQ}\) ..................(1)

\(\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{AC}+\overrightarrow{DB}=\overrightarrow{AP}+\overrightarrow{PQ}+\overrightarrow{QC}+\overrightarrow{DP}+\overrightarrow{PQ}+\overrightarrow{QB}\)

\(=2\overrightarrow{PQ}+\left(\overrightarrow{AP}+\overrightarrow{DP}\right)+\left(\overrightarrow{QB}+\overrightarrow{QC}\right)=2\overrightarrow{PQ}\) ..................(2)

từ (1) (2) ta có : \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{PQ}\left(đpcm\right)\)