K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

A B C D N M

CM: a) Ta có: AM = MB = 1/2AB (gt)

      ND = NC = 1/2DC (gt)

mà AB = CD (gt) => 1/2AB = 1/2CD
=> AM = MB = ND = NC

Xét tứ giác AMCN có: AM = MC (cmt)

                              AM // MC (gt)

=> tứ giác AMCN là hình bình hành

b) Xét tứ giác MBND có : MB // DM (gt)

                    MB = DN (cmt)

=> tứ giác MBND là hình bình hành

10 tháng 12 2016

Ta có: AM=MB=AB/2 ( M là trung điểm AB)

          DN=NC=DC/2 (N là trung điểm DC)

      Mà: AB=AC (ABCD LÀ HBH)

=> AM=MB=DN=NC

Xét tứ giác AMCN:

AM=NC (cmt)

AM//NC (AB//CD)

Vậy AMCN là hình bình hành

b. 

Xét tứ giác AMND:

AM=ND (cmt)

AM//ND (AB//CD)

Vậy AMDN là hình bình hành

C. hình như bạn chép sai đề rồi: TK??

10 tháng 12 2016

cô giáo mk in đề cương mà s mà sai cho dk chứ

22 tháng 9 2020

1.

AB=CD (cặp cạnh đối hbh)

AM=AB/2 và CN=CD/2

=> AM=CN (1)

AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)

Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

2.

a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC 

=> MN//BC => MN//BP và MN=BP=BC/2

=> BMNP là hbh (lý do như bài 1)

b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN

\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)

Từ kq câu a => MN=BC/2=4/2=2 cm

C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm

Chu vi BMNP là

(2+1,5)x2=7 cm

a: ABCD là hình chữ nhật

=>O là trung điểm chug của AC và BD; AC=BD

=>OM=ON

Xét ΔAON và ΔCOM có

OA=OC

góc AON=góc COM

ON=OM

=>ΔAON=ΔCOM

Xet tứ giác ANCM có

O là trung điểm chung của AC và NM

=>ANCM là hình bình hành

b: Xét ΔDMC có OH//MC

nên DO/OM=DH/HC

=>DH/HC=2/1=2

=>DH=2HC

Xét ΔDOH có

N là trung điểm của DO

NE//OH

=>E là trung điểm của DH

=>DE=EH=1/2DH=HC

=>EH=1/3*DC

Xét ΔMFB và ΔMCD có

góc MFB=góc MCD

góc FMB=góc CMD

=>ΔMFB đồng dạng với ΔMCD

=>FB/CD=MB/MD=1/3

=>FB=1/3CD=EH

 

a: Gọi O là giao của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AECG có

AE//CG

AE=CG

Do đó: AECG là hình bình hành

=>AG//CE và AG=CE

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AF//CH và AF=CH

Xét ΔANB có

E là trung điểm của AB

EM//AN

Do đó: M là trung điểm của BN

=>BM=MN

Xét ΔDMC có

G là trung điểm của DC

GN//MC

Do đó: N là trung điểm của DM

=>DN=MN=MB=1/3DB

DN=1/3DB

DO=1/2DB

Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)

Xét ΔADC có

DO là trung tuyến

DN=2/3DO

Do đó: N là trọng tâm

=>A,N,G thẳng hàng và C,N,H thẳng hàng

Xét ΔABC có

BO là trung tuyến

BM=2/3BO

Do đó: M là trọng tâm

=>A,M,F thẳng hàng và C,M,E thẳng hàng

Xét ΔEBM và ΔGDN có

EB=GD

\(\widehat{EBM}=\widehat{GDN}\)

BM=DN

Do đó: ΔEBM=ΔGDN

=>EM=GN

Xét tứ giác EMGN có

EM//GN

EM=GN

Do đó: EMGN là hình bình hành

b: Để EMGN là hình chữ nhật thì EG=NM

=>\(AD=\dfrac{BD}{3}\)

a) Xét tứ giác AMND có 

AM//ND

\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMND là hình bình hành

Suy ra: AD=MN

b) Xét tứ giác BCNM có 

BM//CN

\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: BCNM là hình bình hành

Xét tứ giác AMCN có 

AM//CN

\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMCN là hình bình hành

Suy ra: AN//CM

hay EN//MF

Xét tứ giác BMDN có

BM//DN

\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)

Do đó: BMDN là hình bình hành

Suy ra: BN//MD

hay NF//ME

Xét tứ giác MENF có 

ME//NF(cmt)

MF//NE(cmt)

Do đó: MENF là hình bình hành