\(\sqrt{x}\)
a, Chứng minh rằng, hàm số đồng biến.
b, Trong c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 7 2021

Điều kiện xác định: \(x\ge0\).

Lấy \(x_1>x_2\ge0\).

\(f\left(x_1\right)-f\left(x_2\right)=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}>0\)

Do đó hàm số đồng biến. 

Lần lượt thế tọa độ các điểm vào hàm số ban đầu, ta thấy điểm \(C\left(9,3\right)\)thỏa mãn nên nó thuộc đồ thị của hàm số đã cho, các điểm khác không thuộc. 

19 tháng 8 2017

Cho hàm số y = f(x) = \(\sqrt{x}\)

a) TXĐ: D = \(\left\{x|x\ge0\right\}\), \(x_1\ne x_2\), \(x_1,x_2\in D\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\sqrt{x_1}-\sqrt{x_2}}{x_1-x_2}=\dfrac{x_1-x_2}{\left(x_1-x_2\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)}\)

\(=\dfrac{1}{\sqrt{x_1}-\sqrt{x_2}}>0\)

Vậy hàm số \(y=f\left(x\right)=\sqrt{x}\) đồng biến

b) Những điểm thuộc đồ thị hàm số là:

A(4;2) , C(9;3), D(8;\(2\sqrt{2}\))

Điểm B(2;1) không thuộc đồ thị hàm số

19 tháng 12 2018

Bài 6:

a) Hàm số (1) là hàm số bậc nhất ⇔ m - 4 ≠ 0 ⇔ m ≠ 4

b) Hàm số (1) là hàm số nghịch biến ⇔ m - 4 < 0 ⇔ m < 4

Hàm số (1) là hàm số đồng biến ⇔ m - 4 > 0 ⇔ m > 4

c) Gọi (x0 , y0 ) là điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi m

Ta có: y0 = (m - 4).x0 + m + 2015 ⇔ m.x0 - 4x0 +m + 2015 - y0 = 0

⇔ m.(x0 + 1) - (4x0 - 2015 + y0) = 0 ⇔ x0 + 1 = 0 và 4x0 - 2015 + y0 = 0

⇔ x0 = -1 và y0 = 2019

Vậy điểm cố định mà đồ thị hàm số (1) luôn đi qua là (-1, 2019)

Xl bn nha, mk ko có thời gian làm mấy câu kia chỉ làm đc từng này thôi, bn thông cảm

7 tháng 9 2019
https://i.imgur.com/FAgmtOY.jpg
31 tháng 5 2017

Hàm số bậc nhất

19 tháng 10 2017

1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1  b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1        2. a) Tự làm  b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\)   y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)              

19 tháng 10 2017

3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\)  b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5