Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a→ + a→ = 2a→
Độ dài của vecto a→ + a→ bằng 2 lần độ dài của vecto a→
Hướng của vecto a→ + a→ cùng hướng với vecto a→
\(y=\sqrt{x-m}+\sqrt{2x-m-1}\)
ĐKXĐ: \(\hept{\begin{cases}x-m\ge0\\2x-m-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge m\\x\ge\frac{m+1}{2}\end{cases}}\)
Hàm số xác định trên \(\left(0;+\infty\right)\) có:
\(\Leftrightarrow\hept{\begin{cases}m\le0\\\frac{m+1}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le0\\m\le-1\end{cases}}\)
\(\Rightarrow m\le-1\)
Do tam giác ABC đều nên tâm I cũng là trọng tâm tam giác. Suy ra IE=r, IC=2r và
\(CE=\sqrt{IC^2-IE^2}=r\sqrt{3}\Rightarrow AC=2CE=2r\sqrt{3}\)
Diện tích tam giác ABC là
\(S=\frac{1}{2}.3r.2r\sqrt{3}=3r^2\sqrt{3}=9\)
H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] ???ng tr�n f: ???ng tr�n qua D v?i t�m I G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D ?o?n th?ng a: ?o?n th?ng [A, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [B, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng c: ?o?n th?ng [C, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng d: ?o?n th?ng [C, D] ?o?n th?ng e: ?o?n th?ng [E, B] A = (-1.1, 0.5) A = (-1.1, 0.5) A = (-1.1, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e
Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt đã cho trở thành \(t^2-2mt-\left(2m-3\right)=0\) (*)
a) Để pt có 4 nghiệm thì (*) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-\left[-\left(2m-3\right)\right]>0\\2m>0\\3-2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+3\right)>0\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow1< m< \dfrac{3}{2}\)
Vậy \(1< m< \dfrac{3}{2}\)
b) Để pt vô nghiệm thì pt (*) vô nghiệm hoặc có 2 nghiệm âm phân biệt.
TH1: (*) vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow-3< m< 1\)
TH2: (*) có 2 nghiệm âm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S< 0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\\m< 0\\m< \dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow m< -3\)
Vậy \(m< -1\) và \(m\ne-3\)
Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên là?
A. 8,125
B. 130
C. 8
D. 8,5
C nha bn