K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

Giải đc chưa bn

13 tháng 5 2018

Lời giải:

Gọi đường thẳng (d)(d) có dạng y=kx+by=kx+b. Vì I(0;1)∈(d)⇒b=1⇒(d):y=kx+1I(0;1)∈(d)⇒b=1⇒(d):y=kx+1

Phương trình hoành độ giao điểm x2+kx+1=0x2+kx+1=0.

Theo đó, nếu A,B=(d)∩(P)A,B=(d)∩(P) thì áp dụng hệ thức Viet ta có: x1+x2=−kx1+x2=−k

Trung điểm của ABAB là II nằm trên trục trung khi 0=xI=x1+x22=−k2⇒k=00=xI=x1+x22=−k2⇒k=0

Do đó k=0k=0 là kết quả cần tìm.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

a)

Đặt PTĐT (d) là: \(y=kx+m\)

Vì điểm $M(0;1)$ thuộc (d) nên: \(1=k.0+m\Rightarrow m=1\)

Vậy PTĐT (d) là \(y=kx+1\)

b)

PT hoành độ giao điểm:

\(y=-x^2=kx+1\)

\(\Leftrightarrow x^2+kx+1=0(*)\)

Để (d) cắt (P) tại một điểm duy nhất thì $(*)$ chỉ có 1 nghiệm duy nhất.

Điều này xảy ra khi \(\Delta=k^2-4=0\Leftrightarrow k=\pm 2\)

1 tháng 4 2021

Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )

Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1

=> y=kx-1(d)

Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:

-x^2=kx-1

<=> x^2-kx-1=0 (1)

Xét phương trình có a=1;c=-1 => ac=-1 <0 

=> (1) luôn có 2 nghiệm phân biệt

=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)