K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

1) a) \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{x+3\sqrt{x}+2}{x-4}+\frac{2x-4\sqrt{x}}{x-4}+\frac{-2-5\sqrt{x}}{x-4}\)

\(=\frac{3x-6\sqrt{x}}{x-4}\)

   b) \(Q=1\Leftrightarrow3x-6\sqrt{x}=x-4\)

\(\Leftrightarrow2x-6\sqrt{x}+4=0\)

Đặt \(\sqrt{x}=t\)\(\left(t\ge0\right)\)

\(pt\Leftrightarrow2t^2-6t+4=0\)

\(\Delta=\left(-6\right)^2-4.2.4=4,\sqrt{\Delta}=2\)

pt ẩn phụ có 2 nghiệm:

\(t_1=\frac{6+2}{4}=2\);\(t_2=\frac{6-2}{4}=1\)

\(\Rightarrow x\in\left\{1;4\right\}\)

11 tháng 9 2016

\(A=x-\sqrt{x^2+2x+1}\)

\(=x-x-1\)

\(=-1\)

11 tháng 9 2016
Bài giải bị thiếu rồi
19 tháng 6 2019

1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)

Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)

\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)

\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)

\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)

\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)

\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)

19 tháng 6 2019

2, a,  Để đồ thị h/s  đi qua gốc tọa độ thì x=y=0

Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)

b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)

Có: OA=2m+1; OB=|-2m-1|=2m+1

Áp dụng hệ thức lượng trong tam giác vuông coS:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)

c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)

Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)

Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x

a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)

c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)