K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

câu a và b thay số vào là ra nhé, bài mik hơi khác:

Ta có m^2 + 2m + 3 = m^2 + 2m + 1 + 2 = (m + 1)^2 + 2 > 0 với mọi m.

 Suy ra hàm số đã cho đồng biến với mọi m với x > 0 và nghịch biến với x < 0

a) Vì \(m^2+2m+5>0\forall m\) nên để hàm số \(y=\left(m^2+2m+5\right)x^2\) đồng biến thì x>0

b) Vì \(m^2+2m+5>0\forall m\) nên để hàm số \(y=\left(m^2+2m+5\right)x^2\) nghịch biến thì x<0

c) Thay x=1 và y=8 vào hàm số \(y=\left(m^2+2m+5\right)x^2\), ta được:

\(m^2+2m+5=8\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow m^2+3m-m-3=0\)

\(\Leftrightarrow m\left(m+3\right)-\left(m+3\right)=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+3=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)

9 tháng 12 2016

a) (m^2+4)>0=> voi moi m

b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)

c) (m^2+2m+2=(m+1)^2+1>0  voi m=>f(x) luon dong bien=> dpcm

9 tháng 12 2016

tong quat y=ax+b

DB khi a>0

NB khi a<0

hang so khi a=0

giai

a. với giá trị nào của m thì hàm số y= ( m+4)x +3 là hsđb : 

=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m

b. với giá trị nào của m tì hàm số y= (m-2)x +31 là hsnb

a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)

c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R

ta ca

a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m

=> a>0 với mọi m=> y luôn đồng biến

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

9 tháng 12 2021

a) khi m khác 1/2

b)khi m >1

c) khi K<5

11 tháng 1 2021

a, Để  y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1

y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1

 y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1

b, f(1) = 2 

\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2

\(\Leftrightarrow\) m - 1 + 2m - 3 = 2

\(\Leftrightarrow\) m = 2

Với m = 2 ta có:

f(2) = (2 - 1).2 + 2.2 - 3 = 3

Vậy f(2) = 3

c, f(-3) = 0

\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0

\(\Leftrightarrow\) 2m = 3

\(\Leftrightarrow\) m = 1,5

Vì m > 1 (1,5 > 1)

\(\Rightarrow\) m - 1 > 0

hay a > 0

Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R

Chúc bn học tốt!

a) 

+) Hàm số đồng biến \(\Leftrightarrow m>1\)

+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)

b) Ta có: \(f\left(1\right)=2\) 

\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)

\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)

c) Hàm số là hàm hằng

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$

$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$

b.

Để hàm nghịch biến thì $1-m^2<0$

$\Leftrightarrow (1-m)(1+m)<0$

$\Leftrightarrow m> 1$ hoặc $m< -1$

Để hàm đồng biến thì $1-m^2>0$

$\Leftrightarrow (1-m)(1+m)>0$

$\Leftrightarrow -1< m< 1$