K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)

    b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5

       Thay y=5 và x=0 vào hs và tìm k

2. a) Tự vẽ

    b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)

    c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y)  (x=-2; y=0)

3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)

       Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1

        Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3

        

6 tháng 12 2016

* y= (k-3)x-3k+3 (d1)

a= k-3 ; b= -3k+3

* y=(2k+1)x+k+5 (d2)

a'= 2k+1 ; b' k+5

a, Để hai đường thẳng cắt nhau thì :

\(a\ne a'< =>k-3\ne2k+1\)

\(< =>k-2k\ne1+3\)

\(< =>-k\ne4\)

<=>\(k\ne-4\)

Vậy \(k\ne-4\) thì hai đường thẳng cắt nhau

b, Để hai đường thẳng cắt nhau tại điểm trên trục tung thì :

\(\begin{cases}a\ne a'\\b=b'\end{cases}\Leftrightarrow\begin{cases}k-3\ne2k+1\\-3k+3=k+5\end{cases}}\)\(\Leftrightarrow\begin{cases}k-2k\ne1+3\\-3k-k=5-3\end{cases}\Leftrightarrow\begin{cases}k\ne-4\\k=-\frac{1}{2}\left(TMĐK:k\ne-4\right)\end{cases}}\)Vậy \(k=-\frac{1}{2}\) thì hai đường thẳng cắt nhau tại điểm trên trục tung

20 tháng 12 2021

\(a,\Leftrightarrow A\left(0;4\right)\in\left(1\right)\Leftrightarrow k=4\\ b,\Leftrightarrow B\left(-3;0\right)\in\left(1\right)\Leftrightarrow3\left(2-k\right)+k=0\Leftrightarrow6-2k=0\Leftrightarrow k=3\\ c,\Leftrightarrow\left\{{}\begin{matrix}k-2=-3\\k\ne1\end{matrix}\right.\Leftrightarrow k=-1\\ d,\Leftrightarrow2\left(k-2\right)=-1\Leftrightarrow k-2=-\dfrac{1}{2}\Leftrightarrow k=\dfrac{3}{2}\)

12 tháng 8 2019

b) (d) cắt trục hoành tại điểm có hoành độ bằng 5 khi

0 = (2 - k).5 + k - 1 ⇒ 9 - 4k = 0 ⇒ k = 9/4

4 tháng 11 2015

a, b=k=0

b,(2k-1).3+k=0 => 3k=3 => k =1

c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5

d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5

27 tháng 11 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}m+1=2m-3\\-2k+1\ne-k-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\k\ne3\end{matrix}\right.\\ b,\Leftrightarrow x=0\Leftrightarrow-2k+1=-k-2\Leftrightarrow k=3\)

10 tháng 12 2020

giải giúp mik vs 

10 tháng 12 2020

a) 

Thay x=0 vào hàm số y= 3x+3, ta được: y= 3 x 0 + 3 = 3

Thay y=0 vào hàm số y= 3x+3, ta được: 0= 3x+3 => x= -1

Vậy đồ thị hàm số đi qua điểm B(-1;0) và C(0;3)

Thay x=0 vào hàm số y= -x+1, ta được: y=  -0 + 1 = 1

Thay y=0 vào hàm số y= -x+1, ta được: 0= -x+1 => x= 1

(Có gì bạn tự vẽ đồ thị nha :<< mình không load hình được sorry bạn nhiều)

b) Hoành độ giao điểm của hai đường thằng y=3x+3 và y=-x+1 :

3x+3 = -x+1

<=> 3x + x = 1 - 3

<=> 4x = -2

<=> x= - \(\dfrac{1}{2}\)

Thay x= - \(\dfrac{1}{2}\) vào hàm số y= -x+1, ta được: y= \(\dfrac{1}{2}\)+1 = \(\dfrac{3}{2}\)

Vậy giao điểm của hai đường thằng có tọa độ (\(-\dfrac{1}{2};\dfrac{3}{2}\))

c) Gọi góc tạo bởi đường thẳng y= 3x+3 là α

OB= \(\left|x_B\right|=\left|-1\right|=1\)

OC= \(\left|y_C\right|=\left|3\right|=3\)

Xét △OBC (O= 90*), có:

\(tan_{\alpha}=\dfrac{OC}{OB}=\dfrac{3}{1}=3\)

=> α= 71*34'

Vậy góc tạo bởi đường thằng y=3x+3 là 71*34'