K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(f\left(0\right)=5=>c=5;f\left(2\right)=4.a+2.b+5=0;f\left(5\right)=25a+5b+5=0\Leftrightarrow5a+b+1=0\)

\(\hept{\begin{cases}4a+2b+5=0\\5a+b+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\10a+2b+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\6a-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{2}\\a=\frac{1}{2}\end{cases}}\)

\(f\left(x\right)=\frac{1}{2}x^2-\frac{7}{2}x+5\)

b)

\(f\left(-1\right)=\frac{1}{2}+\frac{7}{2}+5=9=>P\left(-1;3\right)kothuocHS\)

\(f\left(\frac{1}{2}\right)=\frac{1}{2}.\frac{1}{4}-\frac{7}{2}.\frac{1}{2}+5=\frac{\left(1-14+5.8\right)}{8}=\frac{27}{8}=>Qkothuoc\)

c)

\(\frac{1}{2}x^2-\frac{7}{2}x+5=-3\Rightarrow\frac{1}{2}x^2-\frac{7}{2}x+8=0\)

\(x^2-7x+16=0\Leftrightarrow\left(x^2-2.\frac{7}{2}x+\frac{49}{4}\right)+\frac{15}{4}\)vo nghiem

22 tháng 4 2020

Bài 1 :

Với x = 1 thì y = 4.1 = 4

Ta được \(A\left(1;4\right)\) thuộc đồ thị hàm số y = f(x) = 4x

Đường thẳng OA là đồ thị hàm số y = f(x) = 4x

y x 4 3 2 1 1 2 3 4 -1 -2 -3 -4 y=4x A

a) Ta có : \(f\left(2\right)=4\cdot2=8\)

\(f\left(-2\right)=4\cdot\left(-2\right)=-8\)

\(f\left(4\right)=4\cdot4=16\)

\(f\left(0\right)=4\cdot0=0\)

b) +) y = -1 thì \(4x=-1\) => \(x=-\frac{1}{4}\)

+) y = 0 thì 4x = 0 => x = 0

+) y = 2,5 thì 4x = 2,5 => \(4x=\frac{5}{2}\)=> x = \(\frac{5}{8}\)

Bài 2 :

a) Vẽ tương tự như bài 1 

b) Thay \(M\left(-2,6\right)\)vào đths y = -3x ta có :

y =(-3)(-2) = 6

=> Điểm M thuộc đths y = -3x

c) Thay tung độ của P là 5 vào đồ thị hàm số y = -3x ta có :

=> 5 = -3x => \(x=-\frac{5}{3}\)

Vậy tọa độ của điểm P là \(P\left(-\frac{5}{3};5\right)\)

@Ngô Tấn Đạt

Nguyễn Thanh Hằng

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=5\\a+b+c=0\\25a+5b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\a+b=-5\\25a+5b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\a=1\\b=-6\end{matrix}\right.\)

Vậy: \(f\left(x\right)=x^2-6x+5\)

b: \(f\left(-1\right)=\left(-1\right)^2-6\cdot\left(-1\right)+5=12< >3\)

=>P không thuộc đồ thị

\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}-6\cdot\dfrac{1}{2}+5=\dfrac{1}{4}-3+5=\dfrac{1}{4}+2=\dfrac{9}{4}\)

=>Q thuộc đồ thị