Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a: Thay x=-2 và y=1 vào (P), ta được:
4a=1
hay a=1/4
b: KHi y=9 thì 1/4x2=9
=>x=6 hoặc x=-6
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
chúc bn hok tốt @_@
a: Thay x=-1 và y=0 vào \(\left(1\right)\), ta được:
\(3\cdot\left(-1\right)^2-2\cdot\left(-1\right)+m=0\)
\(\Leftrightarrow m+3\cdot1+2=0\)
hay m=-5
b: Thay y=0 vào \(\left(1\right)\), ta được:
\(3x^2-2x-5=0\)
a=3; b=-2; c=-5
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=\dfrac{5}{3}\)
a) Hàm số y=ax2 đi qua điểm (-1;3) nên
=> 3==a(-1)2
=> a=3
=> Hàm số là y=3x2
b) Các điểm cách đều 2 trục tọa độ có: |x|=|y|
\(\Rightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\cdot y^2\\x=3\cdot\left(-y\right)^2\end{cases}\Rightarrow}x=3y^2}\)
<=> y(3y-1)=0
=> \(\orbr{\begin{cases}y=0\\3y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=0\\y=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}}\)
=> 2 điểm thỏa mãn là: (0;0) và \(\left(\frac{-1}{3};\frac{1}{3}\right)\)