K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+1=-2x+4\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

7 tháng 1 2022

Còn c sao ạ

b: Tọa độ là:

\(\left\{{}\begin{matrix}x+1=-2x+4\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

c: Gọi A,B lần lượt là tọa độ giao điểm của đường thẳng y=-2x+4 đến trục Ox, Oy

Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\-2x+4=0\end{matrix}\right.\Leftrightarrow A\left(2;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x_B=0\\y_B=-2\cdot0+4\end{matrix}\right.\Leftrightarrow B\left(0;4\right)\)

Gọi OH là khoảng cách từ O đến đường thẳng y=-2x+4

Xét ΔOAB vuông tại O có OH là đường cao 

nên \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

hay \(OH=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)

20 tháng 11 2016

a/ Hai hàm số có đồ thị // với nhau khi

\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)

b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ

\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được

\(b=ma+3\)

\(\Leftrightarrow ma+3-b=0\)

Để phương trình này không phụ thuôc m thì

\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)

Tọa độ điểm cần tìm là M(0, 3)

20 tháng 11 2016

d/ Ta có khoản cách từ O(0,0) tới (d) là 1

\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)

\(\Leftrightarrow\sqrt{1+m^2}=3\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}3x^2-2x-1=0\\y=3x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2-3x+x-1=0\\y=3x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x+1\right)=0\\y=3x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;3\right);\left(-\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)

a: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=2x-3\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=9\end{matrix}\right.\)