K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Tọa độ A là:

y=0 và -2x+2=0

=>x=1 và y=0

=>A(1;0)

Tọa độ B là:

x=0 và y=-2x+2

=>x=0 và y=-2*0+2=2

=>B(0;2)

b: C thuộc Ox nên C(x;0)

D thuộc Oy nên D(0;y)

ABCD là hình thoi nên AB=AD và vecto AB=vecto DC

A(1;0); B(0;2); C(x;0); D(0;y)

\(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{DC}=\left(x;-y\right)\)

\(AB=\sqrt{\left(0-1\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

\(AD=\sqrt{\left(0-1\right)^2+\left(y-0\right)^2}=\sqrt{y^2+1}\)

vecto AB=vecto DC

=>x=-1 và -y=2

=>x=-1 và y=-2

AB=AD

=>y^2+1=5

=>y^2=4

=>y=2(loại) hoặc y=-2(nhận)

Vậy: x=-1 và y=-2

=>C(-1;0); D(0;-2)

Gọi phương trình (d2) có dạng là y=ax+b

(d2) đi qua C và D nên ta có hệ phương trình:

a*(-1)+b=0 và 0*a+b=-2

=>b=-2 và -a=-b=2

=>a=-2 và b=-2

=>y=-2x-2

c: (d1): y=-2x+2 và (d2): y=-2x-2

loading...

 

6 tháng 7 2016

(d1): y = 1/2x + 2

và (d2): y = -x + 2

1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.

(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)

  (d2) là đường thẳng đi qua hai điểm (0; 2) và  (2;0)

2. Tính chu vi và diện tích của tam giác ABC

(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2

Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:

\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)

\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)

Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6

≈ 13,30

Diện tích tam giác ABC

\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)

NHÉ THAK NHÌU

11 tháng 3 2017

a, HS Tự làm

b, Tìm được C(–2; –3) là tọa độ giao điểm của  d 1  và  d 2

c, Kẻ OH ⊥ AB (CHOx)

S A B C = 1 2 C H . A B = 9 4 (đvdt)

16 tháng 11 2023

a: loading...

 

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\3x-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=0\end{matrix}\right.\)

Vậy: A(1/3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3\end{matrix}\right.\)

Vậy: B(3;0)

Tọa độ C là:

\(\left\{{}\begin{matrix}3x-1=-x+3\\y=3x-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x=4\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\cdot1-1=2\end{matrix}\right.\)

Vậy: C(1;2)

c: Gọi \(\alpha\) là góc tạo bởi (d1) với trục Ox

\(tan\alpha=a=3\)

=>\(\alpha\simeq71^033'\)

27 tháng 11 2021

\(b,\text{PT giao Ox của }\left(d_2\right):y=0\Leftrightarrow-x+3=0\Leftrightarrow x=3\Leftrightarrow B\left(3;0\right)\Leftrightarrow OB=3\\ \text{PTHĐGĐ }\left(d_1\right)\text{ và }\left(d_2\right):2x=-x+3\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow A\left(1;2\right)\\ \text{Gọi }H\text{ là đường cao từ }A\text{ của }\Delta OAB\\ \Rightarrow AH=\left|y_A\right|=2\\ \Rightarrow S_{OAB}=\dfrac{1}{2}AH\cdot OB=\dfrac{1}{2}\cdot2\cdot3=3\left(đvdt\right)\)

a: Phương trình hoành độ giao điểm là:

3x-4=4x-6

\(\Leftrightarrow3x-4x=-6+4\)

\(\Leftrightarrow-x=-2\)

hay x=2

Thay x=2 vào \(\left(d1\right)\), ta được:

\(y=3\cdot2-4=2\)

b: Thay y=0 vào \(\left(d1\right)\), ta được:

\(3x-4=0\)

hay \(x=\dfrac{4}{3}\)

Thay x=0 vào \(\left(d1\right)\), ta được:

\(y=3\cdot0-4=-4\)

Vậy: \(A\left(\dfrac{4}{3};0\right);B\left(0;-4\right)\)