K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2) Phương trình hoành độ giao điểm là:

3x+m=2x-1

\(\Leftrightarrow3x-2x=-1-m\)

\(\Leftrightarrow x=-m-1\)

Để (*) cắt đồ thị của hàm số y=2x-1 tại điểm nằm trên góc vuông phần tư thứ IV thì \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m-1>0\\2x-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m>1\\2\left(-m-1\right)-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m-2-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\m>\dfrac{-3}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m< -1\)

7 tháng 10 2018

a, hàm số đi qua gốc tọa độ O

\(\Rightarrow\) đồ thị hàm số có dạng \(y=x.z=mx+(2m+1)\Rightarrow 2m+1=0\)

\(\Rightarrow m=-\dfrac{1}{2}\)

b, khi \(m=1\Rightarrow y=x+3\)

Xét y=0 suy ra x=-3

suy ra lấy điểm A(-3,0)

Xét x=0 suy ra y=3

Lấy điểm B(0,3) 

Nối A,B ta được đồ thị cần vẽ

y x o -3 3 y=+3

c, đồ thị hàm số trên cắt đồ thị hàm số y=2x-1 tại 1 điểm trên trục tung suy ra gọi điểm đó là M ta có ( giao của 2 đồ thị nha)

M có hoành độ =0

thay vào 2 hàm số trên suy ra:

\(\hept{\begin{cases}y=2m+1\\y=-1\end{cases}\Rightarrow2m+1=-1\Rightarrow m=-1}\)

Xong rồi bạn nha!

7 tháng 10 2018

quên mất kí hiệu A, B trên hình minh họa -_-

b: Thay x=0 và y=-3 vào y=(m-1)x+m+1, ta được:

m+1=-3

hay m=-4

c: Thay x=1 và y=2 vào (d), ta được:

m-1+m+1=2

=>2m=2

hay m=1

d: Để hai đường trùng nhau thì \(\left\{{}\begin{matrix}m-1=2\\m+1=-1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

e: Để hai đường song song thì m-1=-2

hay m=-1

15 tháng 11 2021

a: Thay x=1 và y=3 vào (d), ta được:

m+2=3

hay m=1

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Bài 1:

a. Để $(d)$ đi qua $A(-1;3)$ thì:
$y_A=2x_A+m\Leftrightarrow 3=2(-1)+m$

$\Leftrightarrow m=5$

b. Để $(d)$ đi qua $B(\sqrt{2}; -5\sqrt{2})$ thì:

$y_B=2x_B+m$

$\Leftrightarrow -5\sqrt{2}=2\sqrt{2}+m$

$\Leftrightarrow m=-7\sqrt{2}$