K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2020

Nhìn thấy đạo hàm bằng định nghĩa là thấy ớn, dài dữ dội

- Khi \(x>1\) \(\Rightarrow f\left(x\right)=\frac{4x-4}{x+1}\)

\(\Delta x=x-x_0\) \(\Rightarrow\Delta y=\frac{4\Delta x+4x_0-4}{x_0+\Delta x+1}-\frac{4x_0-4}{x_0+1}=\frac{8\Delta x}{\left(x_0+1\right)\left(x_0+1+\Delta x\right)}\)

\(\Rightarrow f'\left(x_0\right)=\lim\limits_{\Delta x\rightarrow0}\frac{8\Delta x}{\Delta x\left(x_0+1\right)\left(x_0+1+\Delta x\right)}=\frac{8}{\left(x_0+1\right)^2}\)

- Khi \(x< 1\Rightarrow f\left(x\right)=2x-2\)

\(\Delta x\) là số gia của \(x_0< 1\)

\(\Rightarrow\Delta y=2\left(x_0+\Delta x\right)-2-\left(2x_0-2\right)=2\Delta x\)

\(\Rightarrow f'\left(x_0\right)=\lim\limits_{\Delta x\rightarrow0}\frac{2\Delta x}{\Delta x}=2\)

- Khi \(x\rightarrow1^+\Rightarrow\Delta y\rightarrow2\left(1+\Delta x\right)-2\rightarrow2\Delta x\)

\(\lim\limits_{x\rightarrow1^+}f'\left(x\right)=\lim\limits_{\Delta x\rightarrow0}\frac{2\Delta x}{\Delta x}=2\)

\(\lim\limits_{x\rightarrow1^-}f'\left(x\right)=\lim\limits_{x\rightarrow1^-}\frac{8}{\left(1+1\right)^2}=2\)

\(\Rightarrow f'\left(1\right)=2\)

29 tháng 4 2020

Cảm ơn bạn nhiều nha!

4 tháng 4 2017

a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).

b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có =ham-so-lien-tuc= 3(-1) +2 = -1.

ham-so-lien-tuc= (-1)2 – 1 = 0.

ham-so-lien-tucnên không tồn tại ham-so-lien-tuc. Vậy hàm số gián đoạn tại
x0 = -1.

26 tháng 5 2017

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) D = (10.58, -5.6) D = (10.58, -5.6) D = (10.58, -5.6)

2 tháng 4 2020

Đề bài yêu cầu gì thế bạn. Tìm m để hàm số liên tục ???