Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=3x^2-6x-m\)
Hàm số có CĐ, CT khi \(y'=0\) có 2 nghiệm pb
\(\Rightarrow\Delta'=9+3m>0\Rightarrow m>-3\)
Tiến hành chia y cho y' và lấy phần dư ta được phương trình đường thẳng qua CĐ, CT có dạng:
\(y=-\left(\dfrac{2m}{3}+2\right)x-\dfrac{m}{3}+2\)
Do đường thẳng tạo với 2 trục 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\left[{}\begin{matrix}-\left(\dfrac{2m}{3}+2\right)=1\\-\left(\dfrac{2m}{3}+2\right)=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{9}{2}< -3\left(loại\right)\\m=-\dfrac{3}{2}\end{matrix}\right.\)
\(y=\dfrac{x^2+\left(m+2\right)x+3m+2}{x+1}\)
\(\Rightarrow y'=\dfrac{x^2+2x-2m}{\left(x+1\right)^2}\)
Để hàm số có cực đại và cực tiểu
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-2m=0\text{ có 2 nghiệm phân biệt}\\x+1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4+8m>0\\x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne1\end{matrix}\right.\) (1)
Ta có:
\(y^2_{CĐ}+y^2_{CT}>\dfrac{1}{2}\)
\(\Leftrightarrow\left(y_{CĐ}+y_{CT}\right)^2-2.y_{CĐ}.y_{CT}>\dfrac{1}{2}\)
\(\Leftrightarrow\left(-2\right)^2-2.\left(-2m\right)>\dfrac{1}{2}\)
\(\Leftrightarrow4+4m>\dfrac{1}{2}\)
\(\Leftrightarrow m>-\dfrac{7}{8}\) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne1\end{matrix}\right.\)
Do \(f'\left(x\right)=x^2-2mx-1=0\)
Có \(\Delta'=m^2+1>0\) nên\(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số đạt cực trị tại \(x_1,x_2\) với các điểm \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :
\(f\left(x\right)=\frac{1}{3}\left(x-m\right)f'\left(x\right)-\frac{2}{3}\left(m^1+1\right)x+\left(\frac{2}{3}m+1\right)\)
Do \(f'\left(x_1\right)=f\left(x_2\right)=0\) nên
\(y_1=f\left(x_1\right)=-\frac{2}{3}\left(m^1+1\right)x_1+\left(\frac{2}{3}m+1\right)\)
\(y_2=f\left(x_2\right)=-\frac{2}{3}\left(m^2+1\right)x_2+\left(\frac{2}{3}m+1\right)\)
Ta có \(AB^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2=\left(x_2-x_1\right)^2+\frac{4}{9}\left(m^2+1\right)^2\left(x_2-x_1\right)^2\)
\(=\left[\left(x_2-x_1\right)^2-4x_2x_1\right]\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\)
\(=\left(4m^2+4\right)\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\ge4\left(1+\frac{4}{9}\right)\)
\(\Rightarrow AB\ge\frac{2\sqrt{13}}{3}\)
Vậy Min \(AB=\frac{2\sqrt{13}}{3}\) xảy ra <=> m=0
Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)
\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)
Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :
\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)
Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)