Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2=2x-3\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=9\end{matrix}\right.\)
a: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2=2x-3\)
\(\Leftrightarrow x^2=8x-12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{4}\cdot2^2=1\\y=\dfrac{1}{4}\cdot6^2=9\end{matrix}\right.\)
b: PTHĐGĐ là:
1/2x^2-x-4=0
=>x^2-2x-8=0
=>(x-4)(x+2)=0
=>x=4 hoặc x=-2
=>y=8 hoặc y=2
a:
Gọi \(M\left(x;-\frac{2}{3}x+\frac{5}{3}\right)\) thuộc (d).
Ta có \(O\left(0;0\right)\). Vậy \(OM^2=x^2+\left(\frac{5}{3}-\frac{2}{3}x\right)^2=\frac{13}{9}x^2-\frac{20}{9}x+\frac{25}{9}=\frac{13}{9}\left(x-\frac{10}{13}\right)^2+\frac{25}{13}\ge\frac{25}{13}\)
Suy ra \(OM\ge\frac{5}{\sqrt{13}}\). Đẳng thức xảy ra khi \(x=\frac{10}{13}\)
Vậy \(M\left(\frac{10}{13};\frac{15}{13}\right)\) thì khoảng cách OM ngắn nhất.
a) Vẽ đồ thị
b) Gọi yA, yB, yC lần lượt là tung độ các điểm A, B, C có cùng hoành độ x = -1,5. Ta có:
yA = . (-1,5)2 = . 2,25 = 1,125
yB = (-1,5)2 = 2,25
yC = 2 (-1,5)2 = 2 . 2,25 = 4,5
c) Gọi yA, yB, yC’ lần lượt là tung độ các điểm A', B', C' có cùng hoành độ x = 1,5. Ta có:
yA, = . 1,52 = . 2,25 = 1,125
yB, = 1,52 = 2,25
yC’ = 2 . 1,52 = 2 . 2,25 = 4,5
Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.
d) Với mỗi hàm số đã cho ta đều có hệ số a > 0 nên O là điểm thấp nhất của đồ thị. Khi đó ta có x = 0.
Vậy x = 0 thì hàm số có giả trị nhỏ nhất.
a:
b: PTHĐGĐ là:
x^2-x-2=0
=>x=2 hoặc x=-1
=>y=4 hoặc y=1