K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 11 2018

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

7 tháng 6 2021

Câu 1: Điều kiện \(D=\left(-\infty;0\right)U\left(1;+\infty\right)\)

\(y'=\frac{\sqrt{x^2-x}-x.\frac{2x-1}{2\sqrt{x^2-x}}}{x^2-x}=\frac{-x}{2\left(x^2-x\right)\sqrt{x^2-x}}\)

Ta thấy \(y'< 0\) trên \(\left(1;+\infty\right)\), suy ra hàm số nghịch biến trên \(\left(1;+\infty\right)\).

Câu 2: 

\(y'=1+\frac{2x}{\sqrt{2x^2+1}}=\frac{2x+\sqrt{2x^2+1}}{\sqrt{2x^2+1}}\)

Xét bất phương trình:

\(2x+\sqrt{2x^2+1}< 0\)

\(\Leftrightarrow\sqrt{2x^2+1}< -2x\)

\(\Leftrightarrow\hept{\begin{cases}x< 0\\2x^2+1< 4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< \frac{-\sqrt{2}}{2}\left(h\right)x>\frac{\sqrt{2}}{2}\end{cases}}\Leftrightarrow x< \frac{-\sqrt{2}}{2}\)

Vậy hàm số nghịch biến trên \(\left(-\infty;\frac{-\sqrt{2}}{2}\right)\).

31 tháng 3 2017

Tập xác định : D = R. y' = => y' = 0 ⇔ x=-1 hoặc x=1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (- ; -1), (1 ; +).

21 tháng 9 2021

bgxvcgđ

31 tháng 3 2017

Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).

19 tháng 4 2016

Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)

với mọi \(x\in\left(0;+\infty\right)\) (*)

Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)

\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow m\le x^2-2x\)với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)

\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)

\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1

Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)

8 tháng 10 2018

Đáp án: A.