\(\left\{{}\begin{matrix}\sqrt{4-x^2}khi-2\le x\le1\\x^2+bx+c.khix>1\end{matr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 5 2020

\(\lim\limits_{x\rightarrow1^-}=f\left(1\right)=\lim\limits_{x\rightarrow1^-}\sqrt{4-x^2}=\sqrt{3}\)

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(x^2+bx+c\right)=b+c+1\)

Để hàm số liên tục tại x=1 \(\Rightarrow b+c+1=\sqrt{3}\)

\(f'\left(1^-\right)=\lim\limits_{x\rightarrow1^-}\frac{-x}{\sqrt{4-x^2}}=-\frac{1}{\sqrt{3}}\)

\(f'\left(1^+\right)=\lim\limits_{x\rightarrow1^+}\left(2x+b\right)=b+2\)

Để hàm số có đạo hàm tại \(x=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c+1=\sqrt{3}\\b+2=-\frac{1}{\sqrt{3}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-2-\frac{1}{\sqrt{3}}\\c=1+\frac{4}{\sqrt{3}}\end{matrix}\right.\)

11 tháng 5 2020

tìm b,c để hàm số có đạo hàm tại x=1

11 tháng 4 2020

a) TXĐ: R

+) Với x \(\ne\) 1, f(x) = \(\frac{2x^2-x-1}{x-1}\) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\))

+) Với x = 1

Ta có: f(1) = 3

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{2x^2-x-1}{x-1}=\lim\limits_{x\rightarrow1}\left(2x+1\right)=3\)

Vì f(1) = \(\lim\limits_{x\rightarrow1}f\left(x\right)\)

=> Hàm số f(x) liên tục tại điểm x = 1

Vậy f(x) liên tục trên R

b) TXĐ: R

+) Với x > 1

Có: f(x) = \(\frac{\sqrt{5x-1}-2}{x-1}\) liên tục trên ( 1; + \(\infty\))

+) Với x < 1

Có: f(x) = -6x + 5 liên tục trên ( - \(\infty\) ; 1 )

+) Với x = 1

f(1) = - 1

\(\lim\limits_{x\rightarrow1-}f\left(x\right)=\lim\limits_{x\rightarrow1-}\left(-6x+5\right)=-1\)

\(\lim\limits_{x\rightarrow1+}f\left(x\right)=\lim\limits_{x\rightarrow1+}\frac{\sqrt{5x-1}-2}{x-1}=\lim\limits_{x\rightarrow1+}\frac{5}{\sqrt{5x-1}+2}=\frac{5}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1-}f\left(x\right)\ne\lim\limits_{x\rightarrow1+}f\left(x\right)\)

=> f(x) gian đoạn tại x =1

Vậy: f(x) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\)) và gián đoạn tại x = 1

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

NV
10 tháng 4 2020

Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì

Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm