K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

20 tháng 6 2023

Có cách nào khác nx ạ?

NV
1 tháng 5 2020

Do \(a=-1< 0\) nên để điều kiện bài toán thỏa mãn thì:

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-2m+1>0\\x_1\le0< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-f\left(0\right)\le0\\-f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m\le0\\0\le0\end{matrix}\right.\)

\(\Rightarrow m\ge\frac{1}{2}\)

14 tháng 12 2022

cô ơi rk đề cho f(x)>0 mà khi thay (0;1) lai thành f(x)<= vậy ạ

 

NV
2 tháng 4 2020

Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)

\(\Leftrightarrow\Delta'< 0\)

\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)

\(\Leftrightarrow m^2-6m+8< 0\)

\(\Leftrightarrow2< m< 4\)

2 tháng 4 2020

yeu

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

13 tháng 2 2022

TH1: m+1=0 <=> m=-1

Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại

TH2: m+1 khác 0 <=> m khác -1

Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x 

<=> {a>0Δ0{m+1>0[(m+1)]24(m+1)0{a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0

<=>{m>1m22m30m>1[m<1m>3m>3{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3

Vậy m>3 thì...