Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(0)=a*0+b=b
f(f(0))=a*b+b
f(f(f(0)))=a*(a*b+b)+b=\(a^2b+ab+b\)=2 (1)
tương tư ta cũng có f(f(f(1)))=\(a^3+a^2b+ab+b\)=29 (2)
thế (1)vao (2) ta được \(a^3+2=\)29\(\Leftrightarrow a^3=29-2=27\Rightarrow a=3\)
f(0) = a . 0 + b = b
f(f(0)) = f(b) = a . b + b = ab + b
f(f(f(0))) = f(ab + b) = a . (ab + b) + b = a2b + ab + b
f(1) = a . 1 + b = a + b
f(f(1)) = f(a + b) = a . (a + b) + b = a2 + ab + b
f(f(f(1))) = f(a2 + ab + b) = a . (a2 + ab + b) + b = a3 + a2b + ab + b
a3 + a2b + ab + b = 29
a2b + ab + b = 2
=> (a3 + a2b + ab + b) - (a2b + ab + b) = 29 - 2
a3+ a2b + ab + b - a2b - ab - b = 27
a3 = 33
a = 3
a)
\(\left|2x-1\right|=7\)
\(\Leftrightarrow2x-1=7\) hoặc \(2x-1=-7\)
\(\Leftrightarrow2x=8\) hoặc \(2x=-6\)
\(\Leftrightarrow x=4\) hoặc \(x=-3\)
Vậy......
b. \(\left|2-3x\right|=-8\) ( vô ngiệm)
c.
\(\left|3x-1\right|=x-1\) ( ĐK: \(x\ge1\))
* TH1:
\(3x-1=x-1\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\) ( loại)
* TH2:
\(3x-1=-x+1\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(loại)
Vậy pt vô nghiệm
d.
\(\left|3-2x\right|=5-x\) ( ĐK: \(x\le5\))
* TH1:
\(3-2x=5-x\)
\(\Leftrightarrow-x-2=0\)
\(\Leftrightarrow x=-2\) (nhận)
*TH2:
\(3-2x=-5+x\)
\(\Leftrightarrow8-3x=0\)
\(\Leftrightarrow x=\dfrac{8}{3}\) (nhận)
Vậy tập nghiệm của pt là: \(S=\left\{-2;\dfrac{8}{3}\right\}\)
\(a,\left|2x-1\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy pt có tập nghiệm S = { 4 ; - 3 }
\(b,\left|2-3x\right|=-8\)
\(\Rightarrow\) pt vô nghiệm
\(c,\left|3x-1\right|=x-1\) (1)
+ Nếu 3x - 1 ≥ 0 thì x ≥ \(\dfrac{1}{3}\)
Khi đó : \(\left|3x-1\right|=3x-1\)
pt(1) \(\Leftrightarrow3x-1=x-1\)
\(\Leftrightarrow3x-x=-1+1\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\) ( ko t/m )
+ Nếu \(3x-1< 0\) thfi x < \(\dfrac{1}{3}\)
Khi đó : \(\left|3x-1\right|=-3x+1\)
pt(1) \(\Leftrightarrow-3x+1=x-1\)
\(\Leftrightarrow-3x-x=-1-1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\dfrac{1}{2}\) ( ko t/m )
Vậy pt vô nghiệm
d, Tương tự c
( Nếu bn chưa lm đc thì ns mk nha )
Theo mình thì trước tiên tìm công thức truy hồi cái đã
Giả sử f(n+1)=a.f(n)+b.f(n-1)+c
Thay x=1,x=2,x=3 và tính được f(4)=3,f(5)=5vào ta thu được hệ phương trình \(\hept{\begin{cases}a+b+c=2\\2a+b+c=3\\3a+2b+c=5\end{cases}}\)
Giải hệ trên được a=1,b=1,c=0
Vậy f(n+1)=f(n)+f(n-1)
Giờ tới đây khá dễ dàng để làm rồi chắc chỉ lưu giá trị rồi lập thôi