Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
y = f(x) là hàm số đa thức liên tục trên R.
Do đó f(x)liên tục trên
Từ đó suy ra, phương trình f(x) = 0 có ít nhất một nghiệm xo ∈ (0;2)
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) > 0 thì phương trình f(x) = 0 có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)
Ví dụ minh hoạ :
- f ( x ) = x 2 − 1 liên tục trên đoạn [−2;2], f(−2).f(2) = 9 > 0
Phương trình x 2 – 1 = 0 có nghiệm x = 1 hoặc x = -1 trong khoảng (-2; 2)
- f ( x ) = x 2 + 1 liên tục trên đoạn [-1; 1] và f(−1).f(1) = 4 > 0. Còn phương trình x 2 + 1 = 0 lại vô nghiệm trong khoảng (-1; 1)
Định nghĩa:
Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia.
Ví dụ:
Cho hình bình hành ABCD, khi đó một đường thẳng bất kỳ đi qua tâm O của ABCD, luôn chia hình bình hành ABCD ra thành hai hình bằng nhau.
Định nghĩa:
Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia.
Ví dụ:
Cho hình bình hành ABCD, khi đó một đường thẳng bất kỳ đi qua tâm O của ABCD, luôn chia hình bình hành ABCD ra thành hai hình bằng nhau.
\(log_5x=6;log_2x=1\)
\(\log_2\left(x+1\right)=8;\log_3\left(x^2+x+1\right)=2\)