\(x+y\le\frac{4}{3}\). Tìm giá trị nhỏ nhất của biểu t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).

Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)

15 tháng 7 2017

Theo đề ta suy ra  \(y\le1-3x\)

\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)

Ta có  \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)

\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)

Vậy  \(A\ge8\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{4}\)

13 tháng 10 2019

Câu 1:

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)

Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)

\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)

Dấu = xảy ra khi x=y=1/2

13 tháng 10 2019

Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)

CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

19 tháng 7 2020

\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)

\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)

\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)

\(=\frac{112}{3}\)

Đẳng thức xảy ra tại x=3;y=3

4 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)

TT...

\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)

\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)

\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)

Vậy GTNN của Q là 3 khi x = y = z = 1